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the role of de novo protein-coding genes
in eukaryotic evolutionary innovation
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The origin of novel protein-coding genes de novo was once considered so

improbable as to be impossible. In less than a decade, and especially in the last

five years, this view has been overturned by extensive evidence from diverse

eukaryotic lineages. There is now evidence that this mechanism has contributed a

significant number of genes to genomes of organisms as diverse as Saccharomyces,
Drosophila, Plasmodium, Arabidopisis and human. From simple beginnings, these

genes have in some instances acquired complex structure, regulated expression

and important functional roles. New genes are often thought of as dispensable

late additions; however, some recent de novo genes in human can play a role

in disease. Rather than an extremely rare occurrence, it is now evident that

there is a relatively constant trickle of proto-genes released into the testing

ground of natural selection. It is currently unknown whether de novo genes

arise primarily through an ‘RNA-first’ or ‘ORF-first’ pathway. Either way, evol-

utionary tinkering with this pool of genetic potential may have been a significant

player in the origins of lineage-specific traits and adaptations.
1. Introduction
A persistent and fundamental question in evolutionary genetics concerns the

origin of genetic novelty [1–3]. Although it is possible for novel functions to

arise within an existing gene [4], it is likely that there will be some degree of antag-

onism or adaptive conflict between the new and the old functions (e.g. [3,5]). By

contrast, new loci are free of such constraints and constitute genetic novelty that

may form the basis for lineage-specific adaptations and diversification [6–8].

The most radical form of genetic novelty comes from genes that originate

de novo from non-genic DNA in that they are not similar to any pre-existing

genes. Both protein-coding and RNA genes are important, but for the purposes

of this perspective we will only consider the former.

Clearly, protein-coding genes must have arisen de novo from non-coding

sequence in very early life evolution. However, it is likely that the processes

of evolution once life was established were very different from those processes

that established life [9]. Consequently, de novo origin was usually considered so

improbable as to be impossible for more recent evolution [2,8]. Instead, gene

duplication, fusion and fission of genes, exon shuffling and other ‘bricolage’

events were considered to be the only viable sources of novel protein-coding

genes—all variations on a genetic theme [9]. Proteins were thought to be

made from a small and finite ‘universe of exons’ [10]. François Jacob articulated

this best when he said ‘To create is to recombine’ [9]. However, in recent years,

there has been a growing appreciation for the role of de novo gene origination.
2. Recent and ongoing de novo gene origination
Until quite recently, most known examples of novel peptide sequences were

intimately related to a pre-existing gene, usually being an extension of coding
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Table 1. Recently originated de novo genes discovered in diverse eukaryotic lineages.

organisms
number of
de novo genes

genes found in
previous studies notable examples and comments references

Drosophila

D. melanogaster 5 — four are X-linked; all five have testis expression bias [16]

D. yakuba and D. erecta 7 þ 3 — [17]

mainly D. Yakuba 11 — seven are X-linked [18]

D. melanogaster subgroup 1 — hydra; testis expression [19]

D. melanogaster subgroup 14 5 — [20]

D. melanogaster group and

D. willistoni

16 — [21]

D. melanogaster 248 (106 fixed)

proto-genes

— discovered based on testis expression. Male-biased

and underrepresented on X chromosome

[22]

mammals

primates (H. sapiens,

P. troglodytes, M. mulatta)

15 — PART1; prostate carcinogenesis [23]

hominoids 24 2 regulated RNA expression predates protein-coding

potential. Transcription in cerebellum

[24]

hominids 1 — NCYM; neuroblastoma pathogenesis [25]

H. sapiens 3 — CLLU1; upregulated in chronic lymphocytic

leukaemia

[26]

H. sapiens 1 — FLJ33706 (C20orf203); expressed in brain; protein

found in neurons.

[27]

H. sapiens 60 1 [28]

H. sapiens 1 — PBOV1; mitigates cancer outcomes [29]

H. sapiens 1 ESRG; essential for maintenance of pluripotency [30]

M. musculus 1 — Poldi; testis expression [31]

M. musculus and

R. norvegicus

69 þ 6 — [32]

plants

Oryza 1 — OsDR10; defence gene [33]

A. thaliana 1 — QQS; starch biosynthesis pathway [34]

A. thaliana and Brassicaceae 25 [35]

Plasmodium

P. vivax 13 — 5/13 have introns within the coding sequence [36]

Yeast

S. cerevisiae 1 — BSC4; DNA repair, synthetic lethal [37]

S. cerevisiae 1 — MDF1; functional role in promoting vegetative

growth

[38]

S. cerevisiae 1 — RDT1; ORF is absent in some strains of S. cerevisiae [39]

S. cerevisiae �1900

proto-genes

— [40]
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sequence into an intron or UTR, or, more radically, translat-

ing an alternative reading frame of the mRNA in so-called

‘overprinting’ [8,11–15]. However, it has now become clear

that de novo origin of protein-coding genes from non-

coding DNA is a consistent feature of eukaryotic genomes,

having been discovered in organisms as diverse as yeast,

plants, flies, mammals, primates and even in recent human

evolution (table 1).
The evidence for de novo genes started to accumulate in the

last decade. In 2006, Begun and colleagues presented evidence

for de novo genes in Drosophila [16,17]. The first functional

characterization of a gene known to be of recent de novo origin

came in 2008 when Cai et al. [37] showed that BSC4 in

Saccharomyces cerevisiae has a role in DNA repair and is a synthetic

lethal. Even in the absence of precise functional annotation, sev-

eral de novo genes in flies and mammals have been shown to
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be under selection (e.g. [22,31]) a sure sign that they are contri-

buting to fitness. Finally, the first population genetics study of

de novo genes clearly demonstrated that de novo genes are

continuously arising and many are still polymorphic [22].

Though de novo gene origination has gained widespread

acceptance as a phenomenon in recent eukaryotic evolution

[41], the extent of its impact remains to be discovered.
 blishing.org
Phil.Trans.R.Soc.B

370:20140332
3. De novo genes in primates
There is perhaps a special interest in the discovery of de novo

genes in the human genome and our close relatives. These

genes are potentially involved in important lineage-specific

adaptations. However, they are also unusual in having no

homologues in model organisms, which is a major obstacle

to understanding their functional contribution, if any.

Most of the genes inferred in primate genomes are annotated

with reference to the human genome. This introduces a bias in

gene annotation that is likely to overlook genes specific to non-

human lineages, and over-infer orthologues of human genes.

Thus, the identification of truly novel human genes is not trivial

and can lead to many false positives and false negatives.

Most de novo genes identified in human and primates

remain uncharacterized. However, several studies found

that human or hominoid de novo genes are most abundantly

expressed in brain tissue, which at least hints at a role of these

new genes in brain evolution [24,27,28].

Ever since the first discovery of human-specific de novo

genes, there have been suggestive but weak links with disease

[23,26,27]. Recently, NYCM, a de novo gene present exclusively

in human and chimpanzee genomes, was shown to be

involved in the pathogenesis of human neuroblastoma through

interaction with the oncogene MYCN [25]. Additionally,

knockdown of a transcript containing a human-specific

de novo open reading frame (ORF) that originated within an

endogenous retrovirus revealed that at least the transcript is

essential for the maintenance of pluripotency [30]. These

provide the first experimental evidence of the functional

importance of de novo genes in our own species.

We carried out an independent analysis to identify protein-

coding genes in human and Homininae. Our criteria were

purposely very strict to avoid inclusion of ambiguous cases

such as those hinting at protein elongations or those cases

where recent independent gene losses could not be excluded.

We found a total of 35 de novo candidates: 16 human-

specific, 5 human þ chimp-specific and 14 Homininae-specific

(D Guerzoni and A McLysaght, manuscript in preparation).

These counts are roughly proportional to branch lengths and

thus support the inference of a relatively constant rate of de

novo gene acquisition in this lineage.
4. Identification of de novo genes
The numbers of genes detected vary quite widely from study to

study with very little overlap (table 1). For example, the first

report of human-specific de novo genes predicted around 18

such genes should exist [26], whereas a more recent paper

identified 60 [28]. These differences are due to the volatility

of the annotation of lineage-specific genes but also due to

differences in the search strategies adopted in different studies

[42]. This shift in methods of detection reflects the growing

acceptance of the possibility of de novo gene origination:
whereas the first papers in the field were cautious and conser-

vative in terms of reporting de novo genes, more recent papers

assume de novo genes exist and employ less conservative

search strategies as they seek to assess their evolutionary

impact. However, it is still the case that careful curation of

lists of de novo genes is required if we are to gain a proper

understanding of the extent of their specific contribution to

recent evolution and how they acquired functionality.

De novo genes are usually defined as protein-coding genes

that have evolved from scratch from previously non-coding

DNA. There are significant challenges surrounding the accu-

rate detection of de novo genes. Identification of de novo

genes generally starts with a sequence similarity search in the

genomes of closely related organisms. The failure to detect a

homologous gene in a sister lineage is the first piece of evidence

in support of the de novo origins of the gene of interest. We are

interested in detecting cases where the gene is absent because it

evolved after the lineage divergence. However, we must also

contemplate and eliminate the alternative possibilities that

the absence is due to recent gene loss in the sister lineage, or

that the absence is false and is in fact an annotation omission

or genome sequencing gap. For these reasons, the most rigor-

ous (and conservative) methods to detect de novo genes

require positive evidence of the absence of the gene in the

other lineages (such as the identification of orthologous but

non-coding sequence), thus permitting inference of absence

in the ancestral sequence [26,42]. Ideally, these studies should

include transcriptome data analysis to accompany DNA

sequence analysis to minimize the under-discovery of genes.

It is possible that some of the more conservative search

criteria introduce bias into the results. For example, the predic-

tion of intron–exon boundaries in the absence of supporting

evidence is problematic. There is therefore a real challenge to

determine whether a potential early stop codon is in frame,

thereby eliminating the ORF from consideration, or if it is in an

intron of a valid candidate gene. Many of the detected de novo

genes have only a single coding exon, which may be a genuine

reflection of their simple structure, or an artefact introduced by

the search strategy, or a mixture of both. (The virtual absence of

introns in S. cerevisiae should ensure an avoidance of this

particular problem in analyses of that genome.)

Similarly, many de novo genes have been discovered close to

or overlapping older genes. This may reflect a reuse of pre-

existing regulatory sequences [26,43] or conservative search

criteria that require detection of orthologous but non-coding

DNA in an outgroup lineage. The sequence conservation that

enables detection of orthology is more likely if there is functional

constraint on an overlapping sequence. This problem could be

avoided by only considering the non-overlapping region of the

novel ORF for the purposes of the sequence similarity search.

By contrast, liberal search criteria naturally carry the risk

of a high false positive rate, and some do not make the dis-

tinction between extension of a gene into previously non-

coding sequence and entirely de novo origination [42].

Eukaryotic genomes may carry a large number of ORFs

that are not annotated as genes, many of which might naively

be considered as candidate de novo genes. For example, the

S. cerevisiae genome contains about 261 000 unannotated

ORFs of at least three codons long [40]. We searched the

human genome for ORFs and found over 13.5 million ORFs

of at least 33 codons long, compared to over 47 000 of the

same length threshold in yeast (including annotated genes).

This increase is roughly proportionate to the larger genome
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size in human but is extremely disproportionate to the

number of annotated genes. This suggests that the problem

of false positives may be more acute in the human genome

and other large genomes.

Recently, Zhao et al. [22] adopted a different strategy to

search for de novo genes. They used RNA-seq in Drosophila
to characterize species-specific transcripts, and examined

these for evidence of natural selection and the presence of

ORFs. Over half of the candidate de novo genes discovered

in this study are not fixed and many of them will probably

be lost from the population. Even so, they uncovered a larger

number of candidate de novo genes than any earlier study,

which is even more remarkable given that they only examined

one tissue. This suggests that there remains a large number of

undiscovered potential de novo genes.
Soc.B
370:20140332
5. Steps in the de novo origin of genes
In order for non-coding DNA to begin to function as a

protein-coding gene, an ORF must originate, the DNA must

be transcribed and the mRNA translated, and the protein

should ultimately become integrated into the cellular pro-

cesses. Though it is tempting to think of this as a stepwise,

directional process, the evidence from yeast and from flies

is that there is a reversible evolutionary continuum from

non-gene to gene [40,44,45]. Those sequences in the grey-

zone between non-genes and genes have been termed

‘proto-genes’ by Carvunis et al. [40].

The earliest discoveries of de novo genes, though from very

different lineages, all had one thing in common—the identified

genes were short and simple. This observation led to the sugges-

tion that the emergence of de novo genes should be a gradual

process, and that these examples were neonates [43]. In keeping

with this, proto-genes gradually acquire traits characteristic

of genes such as longer coding length, higher expression,

cis-regulatory sequences, codon usage bias and purifying

selection [40]. Similarly, the encoded proteins get progressively

integrated into cellular processes [45,46]. Furthermore, young

de novo genes that are polymorphic in Drosophila melanogaster
and ‘caught in the act’ of originating were significantly shorter

and simpler than annotated genes [22].

In order to be considered a candidate de novo protein-

coding gene, these sequences must both contain an ORF

and be expressed; however, there is no reason to think that

these must arise in a particular order [47].

An RNA-first model (figure 1, left) describes a transcribed

region of genome which acquires an ORF through DNA

mutations [24]. This scenario is supported by multiple obser-

vations of de novo genes where the orthologous region in a

sister lineage is transcribed but there is no ORF, suggesting

that the ancestral sequence was transcribed prior to the emer-

gence of the ORF [20,37]. There is also strong evidence that

RNAs such as lncRNAs can provide a ready supply of new pep-

tides [24,47,48]. The discovery that five out of 13 de novo genes

in Plasmodium vivax have introns within the coding sequence,

even given the unusual evolutionary constraints on introns in

that genome, led to the suggestion that the complex intron–

exon structure predated the coding capacity of these loci, prob-

ably as features of an RNA gene [36]. In these cases, only the

protein-coding capacity can be said to be de novo.

Alternatively, given the large number of ORFs per

genome it is easy to imagine how an existing ORF might
eventually become expressed (figure 1, right). Novel DNA

sequence changes in regions cis to ORFs can induce

expression [2]. Not only ORFs but other gene features may

be cryptic in the genome. In the case of the mouse de novo

gene Poldi, there is evidence that some of the complex gene

structures involved in regulation and splicing predate the

expression of the locus [31].

The transcription-first model appears to be more popular,

having been the first to accumulate evidence. However,

the first study of the population genetics of de novo genes

found evidence for pre-existing ORFs becoming expressed

[22]. Zhao et al. identified loci that harbour ORFs in all

D. melanogaster individuals and also in sister lineages but

where transcription was only discovered in a subset of individ-

uals. The expression polymorphism was linked to cis-sequence

variation [22]. These results show a clear mechanism for

previously cryptic ORFs in the genome to become expressed.
6. Fixation of de novo genes
The fixation of a de novo gene is expected to have important

differences from the fixation of genes formed by re-use of

existing genes either in part or in their entirety [21,49]. In

the case of gene duplication, the new gene is redundant

and in most cases carries no immediate selective advantage

or disadvantage, and although it is functional, there is no

novelty involved. As such, initial fixation will often be largely

dictated by passive processes rather than selection [50]. Genes

generated by fusion, fission or recombination will create

some immediate novelty, but the component parts are

likely to retain the functionality of the protein domains that

they contain, albeit in a novel context, some of which may

confer an immediate selective advantage or disadvantage.

The potential protein of a novel ORF can be considered an

arbitrary sequence, as opposed to one that has been refined

by natural selection. It has been shown that an arbitrary

sequence can contain selectable variation, at least in some cir-

cumstances [51]. If not expressed, neither the favourable nor

the unfavourable ORFs in the genome will have the opportu-

nity to be improved or removed by selection. If an arbitrary

ORF abruptly became highly expressed, it is improbable

that it would have a positive effect, and perhaps more

likely that it would be deleterious [16], especially if it is

long. However, at low levels of expression such as is typical

for proto-genes [40], these regions could become exposed to

selection to remove deleterious proto-genes before they

become established [39,52]. Thus, the pool of proto-genes is

enriched for those with a more plausible chance of becoming

a gene [39]. Such a scenario enhances the probability that a

proto-gene can successfully transition to a gene.

Genetic drift has played a large role in the evolution of

complex genomes. Eukaryotic genomes have accumulated

many initially sub-optimal features which, though they orig-

inate passively, do ultimately confer adaptive potential in the

form of genetic raw material [53]. Population size is con-

sidered to have been a determining factor in this because in

small populations the distribution of fitness effects is altered

so that a larger proportion of variants is effectively neutral

[53,54]. Similarly, it will be interesting to explore the impact

of population size on the rates of de novo gene origination.

There is evidence for de novo gene origination by both

‘RNA-first’ and ‘ORF-first’ routes. At present, there are not
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Figure 1. Dynamic and reversible de novo evolution of genes. A huge amount of potential within large eukaryotic genomes exists in the form of expressed non-
coding regions (left) and non-expressed ORFs (right). DNA sequence mutations can create an ORF in already expressed regions, or give rise to cis-regulatory signals in
regions already containing an ORF. Purifying selection can act as a filter to remove the most deleterious cases, either by abolition of expression or disruption of the
ORF. Remaining proto-genes may become true genes through the action of positive selection and/or drift. Drift may operate at any point in the process and is
omitted for visual clarity.
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sufficient data to determine whether one of these is a more

productive source of new genes. A certain fraction of the arbi-

trary peptides generated in this way will be deleterious [9,55].

We may thus imagine two scenarios: one where an arbitrary

ORF appears in a locus of significant transcription (‘RNA

first’) and one where a cryptic, arbitrary ORF experiences

some low, perhaps sporadic, transcription (‘ORF first’).

In both scenarios, transcription is required to expose the

genomic variation to natural selection. In the ‘RNA-first’

scenario, the transcript regulation and processing might be
refined and stabilized by natural selection prior to the emer-

gence of the ORF. The initial translation of the ORF might be

no more than noise, but such noise could permit the removal

of strongly deleterious ORFs by natural selection [39].

lncRNAs might be particularly suited to act as the foun-

dations for de novo genes, because they have only limited

sequence constraints [56] and so limited adaptive conflict

with the evolution of an ORF.

In the ‘ORF-first’ scenario, the transcript and the ORF poten-

tially become exposed to natural selection simultaneously.
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Under this model, the ORF is already fixed and transcription

may either be initially just noise [57], or may be induced by

cis mutations [22] and so be initially stable but polymorphic.

Ribosomes can associate with these transcripts [39,40,48,58,59]

and so a similar opportunity for purifying selection exists.

Both RNA-first and ORF-first provide plausible routes

for the evolution of new genes. In either case, the final

steps will be determined by a combination of drift and selec-

tion. Whether one route is favoured over the other will

depend on the size of the ‘mutation space’ that can generate

an ORF from non-coding sequence (RNA first), or that can

induce expression in a silent region of the genome (ORF

first). Effective population size (Ne) could also have an

impact on which route is favoured. In larger populations,

selection is more effective and drift is weak. In such circum-

stances, the RNA-first route might be more plausible because

the initial steps can involve fixation of a functional RNA gene

through positive selection. By contrast, at small Ne the

genome is more likely to be large and noisy, and this could

increase the opportunities for the ORF-first route.
0332
7. Functional contribution of de novo genes
In the Descent of Man, Darwin draws a distinction between a

difference of ‘degree’ and a difference of ‘kind’. In the same

way, we can consider whether apparently lineage-specific

traits are the result of genes that are different by degrees

(diverged form of a gene present in the common ancestor) or

of a different kind (de novo genes). Phylostratigraphic studies

of eukaryotic genomes have pointed to several evolutionary

periods that have disproportionately experienced a high rate

of emergence of new genes [7]. These periods are associated

with major species radiations and thus support the notion

that new genes are integral to evolutionary innovation.

A large part of the interest in de novo genes is to do with

understanding their potential to evolve novel functions in a

relatively short time-frame. There are a few examples of

de novo genes with well-characterized functionality. The

human-specific de novo gene FLJ33706 was discovered to

be most highly expressed in brain tissue and was furthermore

found to have elevated levels in Alzheimer’s disease brain

tissue, and a single-nucleotide polymorphism within the

gene has been linked to addiction disorders [27]. Knockdown

experiments demonstrated that the novel, human-specific

gene ESRG is required for the maintenance of pluripotency

in human naive stem cells [30]. It is difficult to definitively

show that it is the peptide rather than the RNA that is func-

tional, but these experimental results are encouraging.

MDF1 is a de novo gene which is only found in S. cerevisiae.

Li et al. [38] conducted several careful experiments to demon-

strate that this very new gene has a function in suppressing

sexual reproduction by binding MATa2 in rich medium and

thus promoting vegetative growth. More recently, it was

shown that the link between nutrient availability and mating

is mediated by MDF1 through its function in two distinct path-

ways [60]. Thus, this novel gene has not only acquired

functionality quite rapidly but has integrated into two central

cellular processes.

The essentiality of de novo genes in Drosophila is currently

less clear, because although one paper reported that out of 16

de novo genes examined three were essential for viability

[21], it has subsequently been shown that the Vienna RNAi
lines used in this and other papers may be compromised

[61]. Thus, it remains to be seen whether or not these particu-

lar results are valid.

One important question concerns how a newly evolved

gene can become essential. It is an apparent paradox because

clearly the organism previously survived in the absence of

that gene. It could be that coevolution of a de novo gene

with an older gene interaction partner could lead to such

essentiality [21]. It is also possible that the new gene might

have provided an alternative function in the cell that resulted

in relaxed constraint on some functions of other genes or

pathways which were subsequently lost. Whereas duplicated

genes may become essential by passive processes such

as subfunctionalization, de novo genes can only become

essential through neofunctionalization [21], a process which

is expected to involve positive selection.
8. Open questions in de novo gene evolution
The study of de novo genes is a new field, and there is much

that remains to be discovered. This is an exciting area of

research because it offers a rare opportunity to witness the

evolution of promoters, gene structure and protein function

[45,62,63].

One interesting question concerns the biological processes

where de novo genes become integrated. If there are trends or

biases in where de novo genes become functional it could

point towards some processes being more dynamic and

open to integrating new genes.

In general, new genes have been shown to be biased

towards male-specific expression or function, specifically in

testis [2]. Haldane’s rule (the observation that in cases of

hybrid sterility it is usually the heterogametic sex that is ster-

ile) is consistent with a model where genes involved in

reproduction have a faster rate of evolution in the heteroga-

metic sex [62]. Interestingly, several of the reported de novo

genes have inferred male reproductive roles or expression

bias [16–19,22,31,44].

It is also interesting to consider how the genome organiz-

ation itself might influence the de novo origin of genes.

De novo genes have been observed in the vicinity of other

genes, leading to the suggestion that they might exploit the

existing regulatory sequences of their neighbours [26,43]. In

yeast, ORFs of different age classes frequently overlap each

other, usually on the opposite strand [40]. One possible mech-

anism for pre-existing genes to influence de novo gene origin

could be through a promoter becoming bidirectional [64].

Conversely, it has also been shown that de novo regulatory

sequences can be associated with the emergence of a gene

[22]. It is not yet known how important existing genes are

as indirect ‘drivers’ of the evolution of de novo genes.

Some regions of the genome have a particularly permiss-

ive expression environment which might facilitate the

graduation of ORFs to proto-genes. One of the first human

de novo genes discovered, CLLU1 [26], is located in a

region of high transcription [65]. The Drosophila X chromo-

some is hypertranscribed in males and early reports of de

novo genes found an X chromosome bias [16,18]. This pat-

tern, however, is not universal [44]. Other genomic features

may facilitate the emergence of de novo genes. Transposable

elements have been linked to the origin of the hydra gene in

Drosophila [19] as well as some primate orphan genes [23].
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In yeast, proto-genes are frequently located in sub-telomeric

regions [40]. Some features of endogenous retroviruses may

provide promoters and RNA processing signals [30].

We can consider the impact that this process has had on

genome evolution. The aspect we have focused on so far is

the origination of new genes. However, another potential

impact is that there could be purifying selection on the pres-

ence of ORFs in transcribed loci, or equally on the

transcription of ORF-containing loci. It would be interesting

to test the interplay between the large number of ORFs pre-

sent in our genome and the extensive transcription that has

been experimentally observed. For example, if ORFs are

rare in transcribed regions of the genome that would suggest

the action of purifying selection.

Generally intractable by comparative genomics analysis,

ribosome occupancy experiments have been powerful in the

identification of small peptides. Recently, small polypeptides

originating from short ORFs (as opposed to processed from a

larger protein) have gained recognition as relevant and

potentially numerous components of genomes [66,67]. The

evolution of short ORFs de novo seems to be particularly

plausible. It would not be surprising to discover a high turn-

over of generation and loss of novel short-peptide-encoding

ORFs. With the cost of expression virtually nil, these have a

reasonable chance of escaping the bottleneck of origination

and becoming functional.
9. Concluding remarks
The discovery of de novo genes is more than simply a discov-

ery of a set of genes in eukaryotic genomes, it is the discovery

of the viability of this process that can release genomic vari-

ation for testing through the filter of natural selection.

Given the large number of ORFs in eukaryotic genomes

and the growing understanding of the importance of short

peptides, it will be interesting to discover whether the under-

lying dynamics enable this pool of cryptic ORFs to have a

significant evolutionary impact.

De novo genes are not only important for their functional

and biological contribution to the lineages in which they orig-

inate; they are also very informative in terms of our growing

understanding of the evolution the genome and of new gene

functions. Evolution continues to tinker.
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