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Where do new genes come from? For a

long time the answer to that question has

simply been ‘‘from other genes’’. The most

prolific source of new loci in eukaryotic

genomes is gene duplication in all its guises:

exon shuffling, tandem duplication, retro-

copying, segmental duplication, and ge-

nome duplication. However, in recent

years there has been a growing appre-

ciation of the oft-dismissed possibility of

evolution of new genes from scratch (i.e., de

novo) as a rare but consistent feature of

eukaryotic genomes [1,2].

Pioneering work identified several de novo

genes in Drosophila [3–5], and since then,

additional Drosophila cases have been identi-

fied [6], as well as cases in yeast [7,8],

Plasmodium [9], rice [10], mouse [11], prima-

tes [12], and human [13,14]. It would appear

that whenever anyone makes the effort to

search, candidate novel genes are found.

In this issue of PLoS Genetics, Wu et al.

[15] report 60 putative de novo human-

specific genes. This is a lot higher than a

previous, admittedly conservative, estimate

of 18 such genes [13,16]. The genes

identified share broad characteristics with

other reported de novo genes [13]: they are

short, and all but one consist of a single

exon. In other words, the genes are simple,

and their evolution de novo seems plausible.

The potential evolution of complex features

such as intron splicing and protein domains

within de novo genes remains somewhat

puzzling. However, features such as proto-

splice sites may pre-date novel genes [9,17],

and the appearance of protein domains by

convergent evolution may be more likely

than previously thought [2].

The operational definition of a de novo

gene used by Wu et al. [15] means that

there may be an ORF (and thus poten-

tially a protein-coding gene) in the chim-

panzee genome that is up to 80% of the

length of the human gene (for about a

third of the genes the chimpanzee ORF is

at least 50% of the length of the human

gene). This is a more lenient criterion than

employed by other studies, and this may

partly explain the comparatively high

number of de novo genes identified. Some

of these cases may be human-specific

extensions of pre-existing genes, rather

than entirely de novo genes—an interest-

ing, but distinct, phenomenon.

Limitations in Defining and
Identifying De Novo Genes

A major consideration in these studies is

the reliable definition and identification

of de novo genes. If a sequence similarity

search fails to return a plausible homolog,

then it may be that you are dealing with

a novel gene. However, it is necessary

to exclude the alternative hypothesis of

recent loss in sister lineages as well as the

possibility that this is a rapidly evolving gene

with highly divergent, but extant, homologs.

Wu et al. [15] have employed a strategy

similar to that of Knowles and McLysaght

[13] to search within the human genome for

candidate novel loci. The search protocol

requires positive evidence of the absence of

the gene from other primate lineages in

order to show that it is not a gene that has

diverged beyond recognition from its ho-

mologs (orthologous DNA is identifiable),

nor is it a gene that has been recently lost in

sister lineages (the ancestral sequence is

inferred to carry a disablement) (Figure 1).

A serious limitation in this approach is

that it relies on existing gene lists that have

been annotated using criteria that usually

include the presence of a homolog in

other genomes. Novel genes fail to meet

this criterion by definition, thus they are

usually not reliably annotated. Wu et al.’s

study [15] highlights the volatility of the

annotation of putatively novel genes—

over half of the candidate de novo genes

they identified are not included in the

more recent Ensembl gene lists they used

(version 56), and by version 60 only six of

these genes were still listed.

It would be preferable to have a method

of identifying novel genes that used

more direct evidence of gene expression.

Sequenced peptides and ESTs can be used

to confirm that a putative gene is opera-

tional, but these data are not currently

suitable for identifying protein-coding

genes from first principles: the peptide

databases usually only list peptides belong-

ing to already-annotated genes [18]; and

the high rate of promiscuous transcription

of the genome, particularly in testis, where

several of Wu et al.’s genes [15] were

expressed at their highest, means that

transcription alone is not sufficient to

recognize a gene [1,19].

However, care must also be taken to

ensure that the ancestral sequence can

reliably be inferred to be non-coding. Wu

et al. [15] restricted their search to chim-

panzee and orangutan genomes, but in

at least one case (ENSG00000221972)

gorilla and gibbon share the ‘‘human-

specific’’ mutation, making this case equiv-

ocal. Ideally, the putative non-coding se-

quences should be investigated for evidence

of transcription and translation to support

the inference of absence of coding capacity.

Future Challenges

Though Wu et al. [15] have contributed

to our growing knowledge of de novo gene

evolution, we still lack a definitive list of de

novo–originated genes in the human

genome—mainly due to issues concerning

genome annotation and the stringent

criteria required to reliably identify cases.

A comprehensive list of de novo genes in

human as well as in other primates would

open up the opportunity to examine the

survivorship of these genes and investigate

their specific contribution to phenotype.

The observation by Wu et al. [15] that

some of the candidate de novo genes are

expressed at their highest in brain tissues

and testis is interesting, but by no means
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proves they are functional. A major chal-

lenge remains to demonstrate functionality

of the de novo genes. This is particularly

difficult for human-specific genes, where

there is perhaps the greatest interest, but

there are also the greatest limitations in

terms of possible experiments.

What Does This Tell Us about
Human–Chimpanzee
Divergence?

Though it remains to be seen if any of the

genes is functional, a clear picture is

developing of de novo evolution as a process

that can create genetic novelty, upon which

there is at least the opportunity for natural

selection to act. It has been argued that

the capacity for innovation generated by

novel genes is particularly important for the

evolution of lineage-specific traits [20].

It is now common knowledge that

human and chimpanzee DNA differ by

only 1% (more accurately, they differ in

1% of alignable regions of genome, with a

further 3% divergence due to lineage-

specific indels [21]). This fact lies in stark

contrast to the large phenotypic differenc-

es between the two species [22]. The study

by Wu et al. [15], along with the previous

reports of de novo genes in human, shows

that even within highly similar regions of

DNA, we can pinpoint small changes at

the nucleotide level—base substitutions

and indels—that have the potential to

generate large phenotypic effects.
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Figure 1. Evidence in the detection of novel genes. A hypothetical example where a novel human ORF is created by a human-specific deletion.
The 1 bp deletion shifts a downstream stop codon out of frame. Because the deletion is not shared by other primates, the ancestral sequence is
inferred to carry the in-frame stop. The authenticity of the novel human gene can be confirmed with transcription and translation evidence.
doi:10.1371/journal.pgen.1002381.g001

PLoS Genetics | www.plosgenetics.org 2 November 2011 | Volume 7 | Issue 11 | e1002381


