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SUMMARY
Small open reading frames (sORFs) can encode functional ‘‘microproteins’’ that perform crucial biological
tasks. However, their sizemakes them less amenable to genomic analysis, and their origins and conservation
are poorly understood. Given their short length, it is plausible that some of these functional microproteins
have recently originated entirely de novo from noncoding sequences. Here we sought to identify such cases
in the human lineage by reconstructing the evolutionary origins of human microproteins previously found to
have measurable, statistically significant fitness effects. By tracing the formation of each ORF and its tran-
scriptional activation, we show that novel microproteins with significant phenotypic effects have emerged
de novo throughout animal evolution, including two after the human-chimpanzee split. Notably, traditional
methods for assessing coding potential would miss most of these cases. This evidence demonstrates that
the functional potential intrinsic to sORFs can be relatively rapidly and frequently realized through de novo
gene emergence.
INTRODUCTION

It is now a well-established biological fact that many more open

reading frames (ORFs) are translated than those traditionally

annotated as protein coding.1 Most of these so called ‘‘nonca-

nonical’’ ORFs, such as ones found on long noncoding RNAs,

are small, typically <300 nucleotides. While most of these are

plausibly just biological noise, many encode functional micro-

proteins.2 Microproteins perform diverse functions through

various mechanisms: some, encoded by upstream ORFs

(uORFs), exert translational control over the main ORF of the

transcript,3 while others interact with larger protein complexes

or with cellular membranes.4,5 Microproteins have long been

overlooked in genomic studies, mostly due to technical limita-

tions linked to their small size.6 But there is now increasing inter-

est and investment toward identifying them and understanding

their functions and possible roles in health and disease.7,8

Well-studied examples of functional human microproteins

include NoBody,9 PIGBOS,10 and myoregulin,11 while many

more have been identified in other species such as mouse,12

plants,13 bacteria,14 and elsewhere.15 Microproteins have been

observed to be highly conserved over long evolutionary times

in animals and in plants,16–18 but they can also be evolutionarily

novel.5,19

Evolutionarily novel genes can evolve out of preexisting ones

through sequence divergence20–22 (preceded by duplication or

not), but they can also emerge entirely de novo, out of ancestrally

non-genic genomic regions.23 The process of de novo gene birth,
Ce
This is an open access article und
as the latter is called, hasnowbeenstudiedextensively inmultiple

species such as yeast,24–26mouse,27 flies,28 fish,29,30 rice31 nem-

atodes,32 and human.33 In humans, early studies relying on gene

annotations33–36 established that de novo genes can indeed

form, even in as short an evolutionary time frameas the split of hu-

man from chimpanzee. Later studies adopted broader search

strategies, starting from entire transcriptomes and incorporating

ribosome profiling data to identify translated ORFs.37,38

While many studies have addressed the conservation of

human microproteins, their modes of origin, de novo or other-

wise, have not been systematically investigated. Indeed, conser-

vation is widely used as a coding/functional signature, hence,

non-conserved, novel ORFs are excluded from most studies.

However, it is practically inevitable that novel genes will initially

arise as ORFs coding for very small proteins31,39 (with additional

tendencies stemming from genomic mutational biases40). Given

the fact that de novo gene birth seems to consistently result in

short ORF sequences23,41 (at least initially), and that micropro-

teins perform functions out of simple structures, it follows that

human microproteins could have recently emerged de novo

and already assumed selectively relevant cellular functions.

Thus, the study of microproteins and the study of de novo

emerged genes naturally intersect.

Here, we leveraged the depth of a recently published dataset

of humanmicroproteins translated from noncanonical ORFs42 to

look for such evolutionary birth events. More specifically, we

sought to identify and examine cases in the human lineage of

small proteins that evolved out of previously noncoding
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sequences and acquired function either immediately or shortly

thereafter. This is doubly important: for our understanding of

the intriguing, and still largely mysterious phenomenon of de

novo gene birth, but also for our appreciation of the full functional

potential of the human genome.

RESULTS

The reconstructed evolutionary origins of human
microproteins
A recent rigorous analysis of ribosome profiling data by Chen

et al. enabled ORF translation to be inferred with high confidence

for hundreds of human noncanonical ORFs.42 We used these

data and focused onORFs that did not overlap canonical, coding

ones, i.e., are either located on transcripts previously annotated

as noncoding (‘‘new’’); or upstream/downstream of known cod-

ing ORFs (‘‘upstream’’ and ‘‘downstream’’ respectively); or new

mRNA isoforms of an annotated protein-coding gene, but where

the new isoform lacked an annotated coding ORF (‘‘new_iso’’),

labeled per classification of Chen et al. (see STAR Methods).

Furthermore, we only kept those ORFs that we could unambig-

uously match to ORFs identified and analyzed by Hon et al.43

in their comprehensive human transcriptome atlas with accurate

50 ends (FANTOMCAT). A total of 715 ORFs were included in the

final dataset (499 ‘‘upstream,’’ 179 ‘‘new,’’ 32 ‘‘new_iso,’’ and 5

‘‘downstream’’). They range from 33 to 3,825 nt in length, with

a median of 81 nt.

For each ORF, we sought to estimate its evolutionary timing of

origination (i.e., when the sequence of the ORF first formed) and

to establish whether its evolutionary mode of origination was de

novo. We searched for the orthologous chromosomal region of

each human ORF in the genomes of 99 other vertebrate species

(see STAR Methods, Table S1). For each ORF, the orthologous

nucleotide sequences were aligned, and we constructed a

phylogenetic tree following the species tree topology to estimate

the branch lengths. Finally, ancestral sequence reconstruction

(ASR) was performed, and the presence or not of an ORF at

each human ancestral node was inferred. To decide whether

an ORF was present or not, we applied a length ratio cutoff

(length of ancestral ORF/length of full ancestral sequence) of

70%, with very short ancestral sequences treated separately

to avoid biases (see STAR Methods). The timing of origination

of the ORF was defined as the most ancient ancestor with an

intact ORF (some additional criteria were applied, see STAR

Methods). In the cases where the most ancient ancestor that

could be inferred was intact, the mode of origination of the

ORF was ‘‘undetermined’’ (limitation due to absence of more

distantly related orthologous regions, or simply because we

had reached the root of the tree). However, in the cases where

an ancestor lacking an intact ORF was found to precede all an-

cestors with intact ORFs, the mode of origination of the ORF

was deemed as ‘‘de novo’’ (Figure 1A).

In total, de novo origin was inferred for 155 ORFs. To assess

the influence of the length ratio parameter, we tested alternative

values: one where de novo attribution was stricter (50%) and one

more relaxed (80%). The same node of origin was inferred for

102/155 and 148/155 de novo ORFs, using the stricter and the

more relaxed cutoff respectively (the differences in inferred
2 Cell Reports 41, 111808, December 20, 2022
ages of origin for de novo ORFs can be found in Figure S1).

Thus, approximately 2/3 of our de novo inferred ORFs are

entirely robust to this parameter, and for an additional 14 of

them, the alternative parameter only changed the date by one

or two nodes of the tree.

The presence or absence of transcription in the orthologous

region of 92/99 vertebrate species was inferred by examining

overlap with annotated transcripts, similarity to known transcript

sequences, and by analysis of raw RNA-seq data (see STAR

Methods). Transcription was inferred to have originated at the

most recent common ancestor of the union of all species in

which transcription of the region was detected by any of the

three approaches. Comparison of our transcriptional ages to

those obtained in two previous studies44,45 showed that, for

the most part, our estimates are at least as ancient as theirs

(see Figure S2). Timing of origination of transcript, ORF, as well

as all other data gathered for the 715 ORFs can be found in

Table S2.

In Figure 1B, we have plotted the distribution of ORF and tran-

script origination nodes on the vertebrate phylogeny. The origin of

the ORF inmost cases in the ‘‘undeterminedmode of origination’’

category is biased toward the oldest nodes. This result is ex-

pected and most likely reflects the limits of homology detection

over time due to sequence divergence.20 The fact that an ORF-

first origin (datapoints below the diagonal) is more prevalent for

these is probably also an artifact due to our limited capacity to

identify distant homologous transcripts. On the other hand, for

those cases for which a de novo origin can be inferred, we see a

prevalence of RNA-first origin for those in the ‘‘up – downstream’’

group. This is to be expected as these ORFs have mostly formed

on preexisting mRNAs. For those in the ‘‘new – new_iso’’ group,

the situation appears more balanced, with a mix of RNA-first

and ORF-first cases. We observe a small number of exceptional

cases where an ORF has been sufficiently conserved to allow ho-

mologydetectionsinceas farbackas thesplit of theEuteleostomi,

but we only see evidence for transcription in the human branch.

Given that transcript discovery and annotation are far from com-

plete outside of model organisms, it is likely that some of these

cases could indeed be false positives, explainedby a lack of iden-

tified transcripts in species other than human. Alternatively, some

could correspond to ORFs that simply happen to overlap with hy-

per-conserved elements such as enhancers, but that have only

recently become transcriptionally active.

We combined the data on the timing of origination of the ORF

and the timing of origination of the transcript to infer the timing of

origination of the 155 de novo origin microproteins. In order for

the microprotein to be produced, an ORF and transcription

are both necessary, so we define the timing of origination of

the microprotein as the earliest node where both are detected

(shaded boxes in Figure 1A, henceforth the term ‘‘putative

origin’’ will be used for this). An exception is made for cases

where transcription evidence postdates the inferred ORF forma-

tion but the sequence shows protein-coding conservation sig-

nals; in such cases (n = 33), timing of origination of the micropro-

tein is then defined as that of the ORF (see STARMethods). Note

that timing of origination is inferred independently from mode of

origination, which can be either ‘‘de novo’’ or ‘‘undetermined.’’

Lastly but most importantly, while the presence of an ORF and



Figure 1. Reconstructing the phylogenetic origins of human microproteins

(A) Graphical example of reconstruction of the timings of origination of the ORF and of transcription for two hypothetical human microproteins. Human ORF A is

intact in chimpanzee but disrupted by an early stop codon in the other species. Since the orthologous genomic region has been identified in all four extant

species, we can align them and use ancestral sequence reconstruction (ASR) to infer the sequence of all four ancestors and determine whether the ORF is intact

or not. In this case, the ORF is not intact (disrupted) in ancestors 1, 2, and 3, since it spans less than 70% of the reconstructed ancestral sequence, and intact in

ancestor 4 (reconstructed ancestral sequences are not shown). We can thus infer that the ORF emerged de novo and place the node of origin of the ORF (green

‘‘O’’) between ancestors 3 and 4 (for practical purposes, we use the age of ancestor 4). The region orthologous to ORF A has been found to be transcribed in all

four species, so the node of origin of transcription is placed at the earliest ancestor (green ‘‘T’’). The putative origin of the microprotein (gray rectangle) is then

calculated as themost recent of the two, which is ancestor 4. ORF B, on the other hand, is intact in all four species where the orthologous region can be identified.

ASR estimates that the ORFwas intact in ancestors 2, 3, and 4, but no ancestor prior to that one can be inferred. Hence this is a case of ‘‘undetermined origin.’’ No

transcript has been found in the orthologous region of any of the other species, so transcription is inferred to be human-specific. The putative origin of micro-

protein B is therefore defined as the human branch, unless there is evidence for protein-coding conservation at the level of the ancestor where the ORF formed, in

which case the age of that ancestor would be used as putative origin of microprotein (here, ancestor 2, marked with an asterisk).

(B) Distribution of the phylogenetic origins of ORFs and transcripts in the two broad categories of ORFs. Species and age corresponding to each node of the tree

can be found in Figure S3. Nodes are ordered from recent to ancient.

(C) Numbers of de novo-originatedmicroproteins with and without significant phenotype in the two cell lines as estimated by Chen et al., grouped by their inferred

putative origin. Twenty de novo ORFs that have no associated phenotype data are included in the ‘‘no phenotype’’ class.
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its transcription are necessary for the expression of a micropro-

tein, they are of course not sufficient. Thus, here we are

assuming that every transcribed ORF in species other than hu-

man is also translated, an assumption that is bound to be

violated. We have consciously made this conservative choice,

which means that our estimates of age of origination should be

viewed as lower bounds.

Evidence for the biological significance of de novo

emerged microproteins
The functional relevance of young de novo originated ORFs is

debated. We thus asked whether any of our recently de novo

emerged, robustly translated microproteins were found to be

functional. For 44/155 de novo originated microproteins,

CRISPR-Cas-based disruption of their ORF was found to have

statistically significant fitness effects in two cell lines (iPSC and

K562) according to the strict criteria of Chen et al. This proportion
is statistically indistinguishable from that for microproteins of un-

determined origin (156/560, X2 p value = 0.98). The putative

origin and knockout phenotype for each of the 155 de novo

emerged microproteins can be found in Figure 1C.

Our results suggest that there has been ongoing de novo birth

of functional microproteins since the early evolution of mam-

mals. At least one such microprotein has originated at each of

the 13 nodes going back to the mammalian ancestor. The

absence in older nodes can be explained by the overall low num-

ber of de novo genes identified there, which in turn is due to

the long evolutionary times. There are 19 de novo emerged, func-

tional microproteins that have a putative origin within the past 43

my (since the ancestor of higher primates, Simiiformes).

12 of those are encoded on lncRNAs and seven on coding

transcripts. Notably, two of these functional microproteins

(CATP00000751060.1 and CATP00001296115.1) have a puta-

tive origin after the split of human and chimpanzee. Both are
Cell Reports 41, 111808, December 20, 2022 3
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expressed from lncRNAs and are cases of ORF-first origination,

but with relatively short intervals between the timing of origina-

tion of the ORF and that of the human-specific transcript (ORF

timings of origination at Hominoidea and Simiiformes). Overall,

the results of this analysis provide strong support for the hypoth-

esis that de novo emerged microproteins have a ready route to

biological significance andmay indeed become functional within

a relatively short evolutionary time frame.

Numbers of de novo originated microproteins with significant

phenotypes across ages correlate strongly with those without

a phenotype (Spearman’s Rho = 0.66, p value = 0.005, excluding

the nodes Sarcopterygii, Euteleostomi, and Vertebrata, for which

no de novo ORFs were found). This implies that a more powerful

search for novel microproteins may uncover further functional

examples, and that the observed numbers might reflect the

limited sampling of cell types and growth conditions experimen-

tally tested.

The fact that some of the microproteins with measurable phe-

notypes have recently emerged de novo and are entirely novel

further reinforces the fact that evolutionaryconservationandcod-

ing signals alone donot reveal the full repertoire of protein-coding

genes in a genome. Indeed, out of the 44denovoemergedmicro-

proteinswith functional evidence, nonewere predicted as coding

by PhyloCSF.46 This tool, widely used in comparative genomics,

determines the likelihood that a sequence is protein-coding

based on a nucleotide multiple sequence alignment. It does so

by testing whether the alignment best fits a phylogenetic model

representing the evolution of codons in known protein-coding

genes or one representing the evolution of nucleotide triplet sites

in noncoding regions (see Chen et al. and Hon et al.42,43 and

Table S2). None of the 44 de novo emerged microproteins were

predicted as coding by RNAcode47 either (Hon et al.43 and

Table S2), and only 4/44 were predicted to be coding based on

the ribosome profiling measure (FLOSS score).43 Only two have

a CPAT48 coding probability higher than 0.5 when calculated

over the ORF sequence only (mean of 0.093), and only four are

predicted by CPAT to be coding based on analysis of the entire

transcript (calculated by Hon et al., see Table S2).

So, are the fitness effects observed really due to the absenceof

the expressed protein, or could they be coming from the regula-

tory or RNA level? Chen et al. performed rescue experiments for

nine ‘‘upstream’’ and seven ‘‘new’’ ORFs where the ORF peptide

was ectopically expressed, as well as controls in which the start

codon of the expressed ORF was removed. In all cases, the

growth phenotype was rescued, and it was shown that

the rescue was dependent on the presence of the start codon.

Out of the seven validated ‘‘new’’ ORFs, five are included in our
Figure 2. Analysis of protein-coding signatures in alignments of human

ORF CATP00001771233.1

(A) Boxplots show distributions of PhyloCSF scores as calculated in this study,

undetermined origin) with andwithout significant phenotypes, (see STARMethods

to 600 and –1,500 respectively to improve visualization. Points show ORFs of mi

least one study. Lines connect points corresponding to the same ORF. Microp

parentheses are coding ORFs uniquely identified as such by our approach.

(B) Phylogenetic tree and multiple sequence alignment of ORF CATP00001771

Sequence names correspond to species assembly versions. The translated sequ

predicted to be identical to N6. Alignment visualized with Mview,50 and phylogen

found in Data S1.
analysis. Only two, with putative origin at Euteleostomi, show

signs of being coding (CPAT andPhyloCSF), while the other three

are all much more recent with putative origin at Hominoidea (de

novo mode of origination), Eutheria (undetermined mode of

origination), and human (undetermined mode of origination).

Similar results are found for ‘‘upstream’’ ORFs. Out of the seven

we analyzed, five showcoding signatures, and they are all at least

as ancient as mammals. The only young one, CATP0000

0415540.1,with a de novo origin at the Simiiformes, entirely lacks

coding signatures. While more validation experiments will be

necessary, these results seem to confirm that the fitness effects

of these young, not characteristically coding ORFs are indeed

linked to the action of the protein.

Comparative methods such as PhyloCSF should be applied

with caution. One difficulty in employing and interpreting

PhyloCSF scores in cases such as ours is that failure to recog-

nize the recent de novo origin of genes may result in the inclusion

of sequences from lineages that diverged before the gene origin

and where the ORF is not present. This can negatively bias the

coding assessment when the algorithm (correctly) infers a lack

of coding potential in a large number of the provided sequences.

Frameshifts, which should be more common in evolutionarily

recent, less constrained coding sequences, can further compli-

cate coding prediction.

Under this rationale, we hypothesized that considering the

phylogenetic origin of each ORF and the conservation of the

reading frame in each alignment might ameliorate coding signa-

ture detection. We thus applied PhyloCSF in codon-aware align-

ments comprising only species descending from the predicted

node of origin of the ORF (origin of transcription is not taken

into account for this specific calculation, see STAR Methods).

We then counted the number of ORFs predicted to be coding

by each study, taking a frequently used cutoff of PhyloCSF score

R 41.43,49 We obtained 62 coding ORFs, that is, 2.8 times more

than Chen et al. (22) and 1.8 times more than Hon et al. (35).

Half (31/62) are not predicted as coding by either previous study.

Importantly, the 31 unique to this study are biasedwith respect to

significant phenotype (19/31, X2 test, p value = 0.00015). These

results, grouped in four broad classes of age of putative origin,

are shown in Figure 2A. A similar difference in coding predictions

is observed when relaxing the score cutoff toR10 (75 vs. 42 and

48). Finally, our approach is the only one that identifies any de

novo originated microprotein with phenotypic effects as coding

(3 vs. 0 and 0), arguably the toughest and most critical cases.

Further evidence for the biological significance of a gene

can come from an observed association with disease. The

disruption of functionally relevant peptides could potentially
small ORFs and their orthologous loci; example alignment of human

by Hon et al. and by Chen et al. for all 715 microproteins (both de novo and

). Boxplot outliers are not shown.Maximum andminimum values have been set

croproteins that are predicted as coding (score R 41, red horizontal line) by at

roteins are grouped in four broad classes of putative origin age. Numbers in

233.1 and its orthologous region in all species where it could be identified.

ences of human ancestors in the +1 reading frame are shown. N5 ancestor is

etic tree visualized with FigTree. An extended version of this alignment can be
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have pathogenic consequences and even be of clinical impor-

tance. To identify such cases, we surveyed all known SNPs an-

notated as pathogenic or likely pathogenic in dbSNP51 found

within the boundaries of our ORFs’ exons.

We identified three such SNPs (summarized in Table S3). ORF

CATP00000063293.1 (upstream, de novo emerged with a puta-

tive origin at Simiiformes) contains one pathogenic SNP (dbSNP:

rs1555735545, single nucleotide variant), associated with Limb-

girdle muscular dystrophy. The SNP is annotated as an intron/50

UTR variant, but it does in fact also change the start codon of the

encoded protein sequence (ATG / ATA). Consistent with a

possible functional role, this ORF has strong PhyloCSF signal,

but only when calculated using our ORF-origin-aware approach

(88.6 vs. �99, Chen and �205, Hon) and a very high phenotypic

score (69, 87th percentile of all ORFs screened by Chen et al.) in

K562 cells.

The second pathogenic SNP is found on ‘‘new’’ ORF CATP00

000005301.1 (SNV, G>A in the forward strand, dbSNP:

rs1238109100). It is tagged as ‘‘Likely Pathogenic’’ related to reti-

nitis pigmentosa.52 This protein is longer (178 aa), predicted to be

entirely disordered, and it too has very high phenotypic score in

K562 cells (47.2). It originated in Amniota, and the lncRNA gene

is most associated withmelanocytes (source: Hon et al.). Themu-

tationwouldchange the155th aminoacid fromhistidine to tyrosine.

Once again, our ORF-origin-aware way of calculating PhyloCSF

produces a strong coding prediction (1,959.299), whereas previ-

ous estimates had negative scores (�901 Chen, �927 Hon). The

strength of this score was surprising, since the microprotein has

a more ancient origin than the one described in the previous para-

graph. We thus ran PhyloCSF again, on a normal, codon unaware

alignment. As expected, the scorewas strongly negative (�3,062),

stressing the importance of reading frame consideration in this

type of alignment. CPAT applied on the ORF sequence only also

predicts this ORF as coding, with a hexamer log likelihood score

of 0.19 (positive values indicate a coding sequence, negative

values indicate a noncoding sequence) and a coding probability

of 0.85.

The third SNP overlaps ORF CATP00000363722.1 (dbSNP:

rs1560929898)and isasinglenucleotidedeletion thatwouldcause

a frameshift after the 16th amino acid. The mutation is associated

with Alazami syndrome,53which is in linewith the ontology associ-

ation of this lncRNA (embryonic stemcell related according toHon

et al.). Curiously, no significant phenotype or coding signatures

were detected for thisORF. Yet we predict an ancient origin (Eute-

leostomi) and subcellular localization to the mitochondria. Note

that, contrary to the first case, the effects of the second and third

SNPs could also be due to change in proteins produced by over-

lapping genes CDH3 and LARP7 (all potential consequences can

be found in Table S3). Overall, these three cases provide excellent

candidates for further exploration of the clinical significance of

novel microproteins.

A novel ORF exemplifies how functional potential can
become rapidly fulfilled via de novo gene birth
We sought a clear-cut case to exemplify the capacity of de novo

gene birth to produce a functional protein product in a short evolu-

tionary time frame. CATP00001771233.1 is a 108-nt ORF, found

on the intergenic lncRNA RP3-527G5.1 (ENSG00000231811.2;
6 Cell Reports 41, 111808, December 20, 2022
Chen et al. peptide RP3-527G5.1_4347298_36aa), which accord-

ing toHonetal. is transcribed through the actionof anenhancer (e-

lncRNA). The lncRNA gene does not overlap other genes in any

strand, with the exception of an intronic region of lncRNA gene

ENSG00000285424 (there are however no overlapping exons,

see Figure S4A). Multiple sources point to this gene being human

specific:Honetal. detectednoorthologous transcription inany tis-

sue in mouse, dog, rat, or chicken, RNAcentral taxonomy results

show the transcript as only present in human, and ENSEMBL lists

the geneas having zero orthologs anddescribes it as novel. None-

theless, our extensive reanalysis of expression data found that the

orthologous locus is transcribed in chimpanzee, thus placing the

conservative timing of origination of the transcript, and hence of

the microprotein, at the human-chimpanzee ancestor.

Based on its reported expression pattern (Hon et al.), the gene

is strongly associated with heart tissue (ontology with strongest

association is cardiac chamber, followed by cardiac valve, car-

diac atrium, melanocyte, atrioventricular valve, and pigment

cell, Figure S4B). A very similar expression pattern is found in

GTEx for this gene (most expressed in heart, by a large margin,

Figure S4C). Consistent with this, in chimpanzee, we only found

the locus transcriptionally active in heart tissue and not in any

other. No expression in heart was found in gorilla, orangutan,

or macaque, where data were available. In human, the gene is

also strongly differentially expressed during melanocytic induc-

tion, as well as two other experimental series (data not available

in other primates).

The identification of the orthologous genomic region that lacks

the ORF in species as evolutionarily distant as the armadillo, the

results of the ASR, combined with the fact that the protein has no

significant matches in any vertebrate proteome (or anywhere

else in NCBI’s nr database) strongly suggest that this ORF

emerged de novo (Figure 2B). Our conservative prediction is

that the ORF formed at the ancestor of Simiiformes (using a

0.5 length ratio cutoff places the origin slightly earlier, at the

ancestor of primates, N6 in Figure 2B). The ATG start codon

formed in the human branch, while all other primate species

have a GTG codon at that position, which theoretically could still

act as a potential start codon (Figure 2B).

No tool predicts coding potential for this ORF or transcript

(PhyloCSF Chen et al. score: �327.4246, PhyloCSF Hon et al.

score:�318.1374, PhyloCSF our score:�54.3, max CPAT score

of transcript: 0.072, CPAT hexamer score for ORF: 0.1, RNAcode

p value: 1, sORFs.org FLOSS score:�1), and there is no observ-

able difference in conservation inside and outside of the ORF’s

exons (Figure S4D). Furthermore, no selection signatures were

found, using two additional tools at two phylogenetic levels (all

47 species or 11 primate species) in the reading frame of the mi-

croprotein (Table S4, STAR Methods). Interestingly, there are

traces of selection coming from the �2 reading frame, in which

a longer, overlapping ORF was found (85 aa). We also run phy-

loP54 and PhastCons55 in default mode, two tools that detect

conservation in general, regardless of whether the sequence is

coding or noncoding. The first found no conservation at either

phylogenetic level (both conservation p value > 0.1), while

the second found no conservation over all the species in the

alignment and only a subset of sites likely under conservation

at the primate level (33/108 sites with posterior probability > 0.5).

http://sORFs.org


Figure 3. Distributions of various ORF, transcript, and protein properties of human microproteins

Distributions of various ORF, transcript, and protein properties for all 715 microproteins, in four broad groups of putative origin age. Wilcoxon test p values are

shown for comparisons of all ‘‘new – new_iso’’ ORFs (n = 211) to all ‘‘up – downstream’’ ones (n = 504), except for subcellular localization (bottom right, X2 test).

Yellow line connects the averages across the groups.
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Nonetheless, the ORF is translated with high confidence (ORF-

RATER score of 0.85 in iPSC) and has a strong fitness effect in

K562 cells (phenotype score: 61.2, 85th percentile). Thus, we

are confident both that this is a genuine gene, and that it

emerged de novo, at the very latest at the human-chimpanzee

ancestor.

Given the association with heart, we also sought to confirm

expression of this microprotein within a recent dataset of

the heart translatome.56 In this dataset, the transcript is absent

in rat and mouse, the only species outside human included in

the study. In human, both transcript and ORF show heart-spe-

cific expression (RNA only expressed and ORF only translated

in iPS-derived cardiomyocytes) further supporting its heart-

specific activity. Furthermore, our analysis suggests that

the ORF encodes an entirely disordered peptide that has

predicted extracellular or nuclear localization. Overall, this

example demonstrates that a recently emerged, human ORF
can rapidly become functional under a highly specific expres-

sion program.

Properties of young and ancient microproteins
In many organisms, it has been shown that evolutionarily novel

genes have distinct sequence properties such as low expression

and short length.41 Although our dataset is biased since it only

includes unannotated and thus shorter ORFs, we investigated

potential differences in various ORF, transcript, and protein

properties across four different phylogenetic groups of origin

of microproteins (Figure 3).

The most significant difference was observed for GC% be-

tween ORFs in the Catarrhini and Vertebrata groups, especially

for ‘‘new – new_iso’’ ORFs (avg. GC% 0.45 vs. 0.57, Wilcoxon’s

test p value = 7.93 10�7). Indeed, there is a correlation between

GC% and time since putative origin (Spearman’s Rho 0.36, p

value = 5 3 10�8, Figure S5A). The difference is smaller and
Cell Reports 41, 111808, December 20, 2022 7
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statistically weaker for the ‘‘up – downstream’’ class (avg. GC%

0.51 vs. 0.59, Wilcoxon’s test p value = 0.036), and there is no

correlation of GC% to time since origination (p value = 0.9).

Both the difference in the ‘‘new – new_iso’’ class and the

absence thereof in the ‘‘up – downstream’’ class are also true

when examining entire transcripts (see Figure S5B). A similar

trend (young ORFs having lower GC% than older ORFs) was

observed by Dowling et al.,38 albeit between slightly different

phylogenetic groups. All these results hold when only using the

timing of origination of the ORF as the putative timing of origin

of the microprotein, without consideration as to transcription

evidence (Figures S6A and S6B).

An equally significant difference was found when comparing

the hexamer score (nucleotide hexamer usage bias between

coding and noncoding sequences) calculated by CPAT for

ORFs. Again, the difference is only found for ‘‘new – new_iso’’

ORFs (average hexamer score 0.0032 vs. 0.17, Wilcoxon’s

test p value = 1 3 10�5), and it is absent in the ‘‘up – down-

stream’’ class (p value = 0.11). This could reflect a tendency

in ‘‘new’’ ORFs to become more ‘‘gene-like’’ and more opti-

mized with time. Such a tendency could be absent in ‘‘up –

downstream’’ ORFs since they are expected to be enriched

in sequence-independent function. Again, these results hold

when only taking into account the timing of origination of the

ORF (Figure S6A).

Comparing all ‘‘new – new_iso’’ ORFs to all ‘‘up – down-

stream’’ ones reveals differences in most features we explored.

Somewhat expectedly, ‘‘new – new_iso’’ ORFs are longer and

GC poorer (albeit that these two properties probably correlate

given the fact that start and stop codons are AT-rich41; the dif-

ference in GC% disappears at the level of entire transcripts,

see Figure S5B), the transcripts they are found on are less

expressed and with higher tissue specificity, and they have

more associated sample ontologies, have lower transcriptional

directionality, and are more exosome sensitive. They encode

microproteins with higher aggregation propensity, less intrinsic

disorder, higher solvent accessibility, higher helix content, and

more aromatic residues (Figure 3). Interestingly, only 15 out of

the 715 ORFs were found to encode a TM domain showing no

timing of origin or significant phenotype bias (X2 test, both

p-values > 0.14). This contrasts with recent findings from

budding yeast where the propensity to form transmembrane

domains is prevalent among young de novo genes.26 No signif-

icant difference was observed in predicted subcellular localiza-

tion between the various classes.

DISCUSSION

Ribosome profiling has enabled the accurate identification of

translated small open reading frames (sORFs). Coupled with

experimental evidence for the phenotypic effects of the encoded

microproteins, this presents an excellent opportunity to study

the evolutionary origin of these elements without being limited

to the use of conservation as a proxy for function. Here we

explored a set of seemingly functional microproteins and uncov-

ered strong evidence of cases of recent de novo origination. For

the most part, these lack coding and selection signatures, con-

firming their novel status.
8 Cell Reports 41, 111808, December 20, 2022
Our conservative estimate is that 12 such biologically signifi-

cant microproteins, encoded in lncRNAs (plus another seven

on coding transcripts), have arisen de novo since the ancestor

of all primates, with two being strictly human specific This esti-

mate should be viewed as a strict lower bound since we infer

the timing of origination of each microprotein based on the

presence of an ORF and the presence of transcription in other

species, but not taking into account fitness effects or even trans-

lation. This latter one is by definition true for the humanORFs. So,

while we treat evidence for presence in the different species

equally, it is necessarily true than in many of these cases there

will not be a protein translated in other species, and if it is, it might

not be functional. Additional, more targeted experimental work is

now needed to conclusively demonstrate both the functional role

of these elements in human and the absence thereof in other

species. Such a confirmation, if it arrives, would be especially

consequential for how we annotate functional coding regions

in the future. We have no theoretical reason to doubt that a func-

tional microprotein can exist in almost total absence of detect-

able evolutionary constraints due to its recent origin. This sce-

nario creates a need for models that take such conditions into

account. Given how rich the human translatome, transcriptome,

and ORFeome are, meeting this need could prove challenging.

An important question is why, out of all the translated novel

ORFs, some rapidly acquire biological function while others do

not. This is essential to identify the biologically relevant sORFs

out of the potentially thousands that could be translated.5 Will

future advances reveal a protogene-model-like reality,25 where,

out of a wide pool of candidates, a few functional ones evolve

stochastically? Or could natural selection have acted already

to enrich translation of ORFs already more or less primed for

functionality, for example by eliminating those likely to be

toxic?57,58 Are these novel microproteins always recruited in a

functionally specificmanner, or do they initially havemore gener-

alized roles? Plausibly, tissue-specific expression of novel pep-

tides might initially carry a smaller risk of overall deleterious ef-

fects, thereby potentially ‘‘shielding’’ them from the action of

purifying selection. It will also be interesting to understand if,

and why, some microproteins evolve in terms of their length,

sequence properties, and functional role, while others remain

unchanged, resembling frozen accidents.59

A related, widely discussed question in the field of de novo

gene origination is whether the genomic loci out of which novel

ORFs emerge have particular characteristics. A highGC%would

favor the formation of ORFs, as stop codons are GC poor, but we

did not find that youngORFs aremoreGC rich than ancient ones,

rather the opposite. This could be partially explained by a selec-

tive pressure for increased GC% (and thus increased expression

and/or nuclear export) acting on intronless genes,60 which are

overrepresented among the ORFs studied here (459/715 are sin-

gle exon). Another possibility is that novel ORFs may emerge out

of pseudogenic loci, where longer ORFs once existed but are

now defunct. Curiously, the region of CATP00001771233.1, the

exemplar ORF above, could correspond to something similar.

While there are clearly no traces of selection/conservation on

the +1 frame of the sequence (the one encoding the micropro-

tein), the +3 frame produces a positive PhyloCSF score of 48

when focusing on the primates (all scores are strongly negative
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using the full alignment). Our dN/dS (ratio of non-synonymous to

synonymous substitutions) analysis detected this signal too, but

more strongly coming from its reverse complement, �2 frame

(see Table S4). We did a search for ORFs on the full sequence

of the transcript downloaded from ENSEMBL and found that

there are multiple longer overlapping ORFs, including an 85-aa

one in the relevant reverse strand. None of these ORFs are found

as translated by Chen et al., and three additional ones (apart

from CATP00001771233.1) are found translated by van Heesch

et al., but these do not correspond to the longer existing ones.

More detailed investigation of the genomic region in future could

show whether this is a signal from an ancient gene that has

become pseudogenized or another novel, overlapping ORF

whose translation is yet to be established.

Limitations of the study
The reader should be aware of the various limitations of our work.

Perhaps the most significant limitation comes from the inference

of phylogenetic ages of transcriptional origins using the pres-

ence and absence patterns of transcription in extant species.

This entails a non-negligible degree of uncertainty. Because of

the patchiness of transcriptional data and the unavoidable limita-

tion in number of tissues and developmental stages sampled,

absence of evidence of transcription cannot be equated with ev-

idence of absence; a locus could always be transcribed in a tis-

sue that has yet to be sampled. We have done our best to err on

the conservative side and utilize multiple sources of data, and

indeed we show that for the most part our estimates are at least

as ancient as those of previous studies. Nevertheless, the

dynamic nature of transcription, the fast turnover rates of tran-

scripts and their rapid rate of sequence divergence, in addition

to the patchiness of the data make it inevitable that we have

underestimated the timing of transcriptional origin in some

cases. Similarly, inference of the exact phylogenetic branch

where an ORF initially formed also comes with uncertainty, as

our varying of the cutoff for defining an ORF as intact showed.

Future work could reveal that other cutoff values might be

more suitable, or that a cutoff tailored to each specific case

might be needed, or that a fixed size cutoff applies in general.

Conversely, one might speculate that a strict cutoff could turn

out to be altogether inappropriate, as there might be no exact

evolutionary time point at which an ORF ‘‘forms,’’ but rather a

gradual transition. More data, coupled with sophisticated phylo-

genetic models could help elucidate this in the future.

Additionally, the true proportion of young de novo ORFs with

phenotypic consequences could be higher. Our study is limited

in using data from only one series of knockout experiments,

but a wider, more comprehensive analysis could bring a more

accurate view into focus. This would also increase confidence

in the phenotypic effects that are detected, decrease the number

of false positives, and allow to more safely build on top of these

findings. Given the relatively small size of the dataset, our con-

clusions about the distribution and properties of functional, de

novo originated microproteins should be viewed with caution.

An additional limitation could stem from the fact that when

analyzing the alignments of ORFs to their orthologous regions,

we only consider the reading frame corresponding to the human

microprotein, and thus we might miss cases of frameshift/over-
printing. It is plausible that ASR might also be a source of false

positives, in which case some of the ORFs we identified as

recently de novo emerged could correspond to ancient ones,

which through a combination of factors such as sequence diver-

gence, deletions, or chromosomal rearrangements appear

recent. Importantly, the use of ASR for the purpose of inferring

the origin of an ORF is still in its infancy, and there might be

biases at play that could influence our results. For instance, it

is known that both alignment quality and branch length uncer-

tainty can directly impact the results of ASR. Application of

multiple ASR methodologies under different parameters and

thorough assessment of reconstruction uncertainty could in

the future alleviate such problems and increase accuracy.

Despite its limitations, our work significantly contributes to our

understanding of how protein-coding novelty evolved along the

human lineage. It supports a more expansive view of the func-

tional potential of the human genome: a view that embraces

these hard-to-detect, small, but significant proteins that show

no traces of conservation. Future investigations could determine

how many there might exist and reveal their precise role in hu-

man physiology and disease.
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Br€uning, T., Rummel, C., Gr€utzner, F., Cardoso-Moreira, M., Janich, P.,

et al. (2020). Transcriptome and translatome co-evolution in mammals.

Nature 588, 642–647. https://doi.org/10.1038/s41586-020-2899-z.

62. Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csárdi, G., Harrigan,

P., Weier, M., Liechti, A., Aximu-Petri, A., Kircher, M., et al. (2011). The

evolution of gene expression levels in mammalian organs. Nature 478,

343–348. https://doi.org/10.1038/nature10532.
Cell Reports 41, 111808, December 20, 2022 11

https://doi.org/10.1073/pnas.1817138116
https://doi.org/10.1038/s41559-019-0822-5
https://doi.org/10.1038/s41559-019-0822-5
https://doi.org/10.1101/gr.234971.118
https://doi.org/10.1101/gr.095026.109
https://doi.org/10.1101/gr.095026.109
https://doi.org/10.1371/journal.pgen.1002379
https://doi.org/10.1371/journal.pgen.1002379
https://doi.org/10.1371/journal.pgen.1005391
https://doi.org/10.1371/journal.pgen.1005391
https://doi.org/10.1042/BST0370778
https://doi.org/10.1042/BST0370778
https://doi.org/10.1371/journal.pgen.1005721
https://doi.org/10.1093/gbe/evaa194
https://doi.org/10.1534/genetics.107.084491
https://doi.org/10.1534/genetics.119.302187
https://doi.org/10.1534/genetics.119.302187
https://doi.org/10.1038/nrg.2016.78
https://doi.org/10.1038/nrg.2016.78
https://doi.org/10.1126/science.aay0262
https://doi.org/10.1126/science.aay0262
https://doi.org/10.1038/nature21374
https://doi.org/10.1038/nature12943
https://doi.org/10.1038/s41586-019-1341-x
https://doi.org/10.1038/s41586-019-1341-x
https://doi.org/10.1093/bioinformatics/btr209
https://doi.org/10.1261/rna.2536111
https://doi.org/10.1093/nar/gkt006
https://doi.org/10.1093/nar/gkt006
https://doi.org/10.1093/nar/gku1060
https://doi.org/10.1093/nar/gkz268
https://doi.org/10.1093/nar/29.1.308
https://doi.org/10.1038/s41598-018-38007-2
https://doi.org/10.1038/s41431-020-00713-9
https://doi.org/10.1038/s41431-020-00713-9
https://doi.org/10.1093/bib/bbq072
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1016/j.cell.2019.05.010
https://doi.org/10.1093/gbe/evr099
https://doi.org/10.1093/molbev/msaa046
https://doi.org/10.1038/s41559-018-0639-7
https://doi.org/10.1038/s41559-018-0639-7
https://doi.org/10.1016/j.cels.2020.03.001
https://doi.org/10.1038/s41586-020-2899-z
https://doi.org/10.1038/nature10532


Article
ll

OPEN ACCESS
63. Roller, M., Stamper, E., Villar, D., Izuogu, O., Martin, F., Redmond, A.M.,

Ramachanderan, R., Harewood, L., Odom, D.T., and Flicek, P. (2021).

LINE retrotransposons characterize mammalian tissue-specific and

evolutionarily dynamic regulatory regions. Genome Biol. 22, 62. https://

doi.org/10.1186/s13059-021-02260-y.

64. Wang, S., Li, W., Liu, S., and Xu, J. (2016). RaptorX-Property: a web server

for protein structure property prediction. Nucleic Acids Res. 44, W430–

W435. https://doi.org/10.1093/nar/gkw306.

65. Käll, L., Krogh, A., and Sonnhammer, E.L.L. (2007). Advantages of com-

bined transmembrane topology and signal peptide prediction—the Pho-

bius web server. Nucleic Acids Res. 35, W429–W432. https://doi.org/10.

1093/nar/gkm256.
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ERR2812387, SRR306763,

SRR306764, SRR306765,

SRR306766, SRR306767,

SRR306768, SRR306769,

SRR306770, SRR306771,

ERR2812391, ERR2812392,

ERR2812393, ERR2812442,

ERR2812443, ERR3417912,

ERR3417983, ERR3418004,

SRR649372, SRR943342,

SRR943343, SRR649373,

SRR649374, SRR943344,

SRR943345, SRR943355,

SRR943356, ERR2812397,

ERR2812398, ERR2812399

Raw RNA-seq data from rat tissue

samples: Brain, Liver, Muscle, Testis

Roller et al.63 ERR3417910, ERR3417913,

ERR3417949, ERR3417917,

ERR3417992, ERR3418010,

ERR3417901, ERR3417903,

ERR3417991, ERR3417900,

ERR3417906, ERR3417950

Raw RNA-seq data from rabbit Human

tissue samples: Brain, Liver, Muscle, Testis

Roller et al.63 ERR3417909, ERR3417957,

ERR3417997, ERR3417919,

ERR3417945, ERR3417948,

ERR3417959, ERR3417978,

ERR3417982, ERR3417971,

ERR3417973,ERR3417980

Raw RNA-seq data from pig tissue samples:

Brain, Liver, Muscle, Testis

Roller et al.63 ERR3417916, ERR3418014,

ERR3418018, ERR3417918,

ERR3417924, ERR3417937,

ERR3417935, ERR3417965,

ERR3417993, ERR3417904,

ERR3417952, ERR3418012

Raw RNA-seq data from horse tissue

samples: Brain, Liver, Muscle, Testis

Roller et al.63 ERR3418005, ERR3418007,

ERR3418011, ERR3417940,

ERR3417956, ERR3417976,

ERR3417966, ERR3417981,

ERR3417988, ERR3417911,

ERR3417951, ERR3417969

Raw RNA-seq data from cat tissue

samples: Brain, Liver, Muscle, Testis

Roller et al.63 ERR3417907, ERR3417925,

ERR3417967, ERR3417927,

ERR3417928, ERR3417934,

ERR3417923, ERR3417932,

ERR3417979, ERR3417926,

ERR3417931, ERR3417933

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Raw RNA-seq data from dog tissue

samples: Brain, Liver, Muscle, Testis

Roller et al.63 ERR3417943, ERR3417972,

ERR3417974, ERR3417942,

ERR3417961, ERR3417977,

ERR3417929, ERR3417936,

ERR3417999, ERR3417958,

ERR3417960, ERR3417985

Raw RNA-seq data from opposum

tissue samples: Brain, Cerebellum,

Heart, Kidney, Liver, Muscle, Ovary,

Placenta, Testis

Wang et al.61;

Brawand et al.62;

Roller et al.63;

Necsulea et al.44

ERR2812403, ERR2812404,

ERR2812405, SRR306745,

SRR306746, SRR306747,

SRR306748, SRR306749,

SRR306750, SRR306751,

SRR306752, ERR2812409,

ERR2812410, ERR2812411,

ERR3417939, ERR3417954,

ERR3417989, SRR649377,

SRR943346, SRR649378,

SRR943347, SRR943348,

ERR2812415, ERR2812416,

ERR2812417

Raw RNA-seq data from platypus

tissue samples: Brain, Cerebellum,

Heart, Kidney, Liver, Ovary, Testis

Wang et al.61;

Brawand et al.62;

Necsulea et al.44

ERR2812421, ERR2812422,

ERR2812423, SRR306728,

SRR306729, SRR306730,

SRR306731, SRR306732,

SRR306733, SRR306734,

ERR2812427, ERR2812428,

ERR2812429, SRR649382,

SRR943349, SRR943350,

ERR2812433, ERR2812434,

ERR2812435

Raw RNA-seq data from chicken

tissue samples: Brain, Cerebellum,

Heart, Kidney, Liver, Ovary, Testis

Wang et al.61;

Brawand et al.62;

Necsulea et al.44

ERR2812331, ERR2812332,

ERR2812333, SRR306712,

SRR306713, SRR306714,

SRR306715, SRR306716,

SRR306717, ERR2812337,

ERR2812338, ERR2812339,

ERR2812438, ERR2812439,

SRR649386, SRR649387,

SRR649388, SRR943351,

ERR2812343, ERR2812344,

ERR2812345

Raw RNA-seq data from frog tissue

samples: Brain, Heart, Kidney, Liver,

Ovary, Testis

Necsulea et al.44 SRR649391, SRR649392,

SRR649393, SRR649394,

SRR649395, SRR649396,

SRR649397, SRR649398,

SRR649400, SRR943352,

SRR649399, SRR943353

Software and algorithms

LiftOver UCSC Genome Browser https://genome.ucsc.edu/

cgi-bin/hgLiftOver

RaptorX Wang et al.64 https://github.com/realbigws/

Predict_Property

Phobius Käll et al.65 https://phobius.sbc.su.se/

IUPRED Dosztányi et al.66 https://iupred2a.elte.hu/

DeepLoc Almagro Armenteros et al.67 https://services.healthtech.dtu.dk/

service.php?DeepLoc-1.0

Bedtools Quinlan et al.68 https://github.com/arq5x/bedtools2

(Continued on next page)
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CPAT Wang et al.48 http://lilab.research.bcm.edu/

Codonw CodonW69 http://codonw.sourceforge.net/

Cutadapt (v 3.7) Martin70 https://cutadapt.readthedocs.io/en/stable/

STAR (v2.7.10a) Dobin et al.71 https://github.com/alexdobin/STAR

StringTie Pertea et al.72 https://ccb.jhu.edu/software/stringtie/

BLAST+ (v. 2) Altschul et al.73 https://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/LATEST/

MAFFT (v. 7.3) Katoh et al.74 https://mafft.cbrc.jp/alignment/software/

Gotree (v. 0.4.1.a) Lemoine et al.75 https://github.com/evolbioinfo/gotree

RAxML next generation (v.0.9.0) Kozlov et al.76 https://github.com/amkozlov/raxml-ng

FastML (v.3.11) Ashkenazy et al.77 http://fastml.tau.ac.il/source.php

TranslatorX Abascal et al.78 http://translatorx.co.uk/

PhyloCSF Lin et al.46 https://github.com/mlin/PhyloCSF

HyPhy (v.2.5.25) HyPhy79 https://www.hyphy.org/

PAML Yang et al.80 http://abacus.gene.ucl.ac.uk/

software/paml.html#download
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Nikolaos Vakirlis

(vakirlisnikos@gmail.com).

Materials availability
This study did not generate new, unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d This paper does not report original code

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data collection
Ourdataset includedORFs thatwere identifiedas translatedwithhighconfidencebyChenetal.42basedonanalysisperformedby theORF-

RATERprogram81 (ORF-RATERscoreR0.8).Following theclassificationofChenetal.,we restrictedouranalysis to thoseORFs locatedon

either previously annotated non-coding transcripts (‘‘new’’), upstream of codingORFs on coding transcripts (‘‘upstream‘‘), downstream of

coding ORFs on coding transcripts (‘‘downstream’’) or on transcripts lacking coding ORFs but which belong to a transcript family with a

member annotated as coding (‘‘new_iso’’). We also required that ORFs be present in the comprehensive catalog established by Hon

et al.43 (FANTOM-CAT dataset). ORFs from the two studieswerematched based on identical chromosomal coordinates, 100%sequence

identity and identical length. Our final dataset consisted of 715 ORFs, located on 527 unique transcripts. Note that some of these ORFs

overlap with others. Human genome version hg19 coordinates were converted to hg38 using the liftover tool in UCSC Genome Browser.

Various types of data were collected and generated for each ORF and its encoded protein. We considered whether the ORF was

found to have significant fitness effects according to Chen et al.’s high-throughput CRISPR-Cas knockout screens in iPSC and K562

chronicmyeloid leukemia cells. Phenotypic scores and classification (significant/not significant) were collected from the data of Chen

et al. for each ORF in the two cell lines. Orthologous transcription, various coding signatures for ORFs and transcripts, expression

data, cell type association, trait association, transcription properties for each transcript were obtained from the Data S1 and the

raw data depository of Hon et al.43 Protein secondary structure was predicted by RaptorX64 using default parameters, transmem-

brane domains were predicted with Phobius,65 disordered regions were predicted with IUPRED,66 subcellular localization was pre-

dicted with DeepLoc67 and percentage of aromatic and hydrophobic amino acids were calculated with codonw.69 CPAT48 was

applied on the sequences of the ORFs to calculate the Hexamer and coding probability scores.
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RNA-seq data processing and mapping
RNA-seq data for 17 species and up to 8 tissues, taken from 4 studies,44,61–63 was obtained from SRA (Table S5). Reads were quality

and adapter trimmed using TrimGalore (v 0.6.6) with cutadapt70 (v 3.7) with a quality cutoff of 10. Reads for each sample were map-

ped to the relevant genome assembly (Table S1) using STAR71 (v 2.7.10a) with default settings, except for muscle samples where –

seedPerWindowNmax was set to 30. To ensure no influence of annotation differences on mapping, a 2-pass strategy was used in

which the first mapping step was used to obtain splice junctions from the RNA-seq data and reads were then re-mapped using this

additional information.

Improvement of transcript set and expression quantification with StringTie
Aligned reads were supplied to StringTie72 along with reference annotations from UCSC for the relevant assembly. Multiple sets of

parameters were used with varying stringencies; default, –conservative and parameters used in Wang et al. 2020.61 We observed

minimal differences and thus the latter set of parameters was used. Orthologous region overlap with assembled transcripts in

each species was determined using bedtools68 intersect and the maximum TPM value as calculated by StringTie for the overlapping

transcripts was assigned as the expression value for each orthologous region of each ORF.

Inference of orthologous transcription based on reference transcriptomes
We initially inferred orthologous transcription by two means. First, we downloaded the NCBI RefSeq annotation GTF files for 92/99

vertebrate species for which it was available. Before it was possible to detect whether orthologous regions of ORFs were transcribed

however, it was necessary to convert genomic coordinates from the assembly versions used in the 100-way alignments, to those

used in RefSeq. To do this, we performed BLASTn73 searches of the orthologous regions to their corresponding genome RefSeq

assemblies using a cut-off of 97% identity. We were thus able to define the coordinates of each exon in the RefSeq version of the

assemblies. We then verified that all updated coordinates produced in this manner were indeed as close as expected to the previous

ones (i.e. we confirmed that no irrelevant matches were retrieved). We then checked, in each species, whether at least one exon of

each orthologous region overlapped with an annotated transcript. An 80% overlapping cut-off was used. This gave us an initial

pattern of presence and absence of transcription across the 92 species. Furthermore, we performed additional BLASTn searches

of each human ORF to the entire vertebrate RefSeq transcript sequence database (downloadedMarch of 2021 fromNCBI’s ftp web-

site, https://ftp.ncbi.nlm.nih.gov/refseq/release/vertebrate_mammalian/plus https://ftp.ncbi.nlm.nih.gov/refseq/release/vertebrate_

other/) and considered the region as transcribed if it matched at the sequence level (regardless of genomic position) any transcript in

one of the 99 species also present in the 100 vertebrate UCSC dataset, with at least 60% query coverage and at least 0.001 E-value.

Note that only very rarely a presencewas inferred in this manner that was not also retrieved based on annotation overlap. The union of

all species with orthologous transcription based on the two approaches, across the 92 vertebrate species, was used to we define the

initial timing of origination of the transcript as the most recent common ancestor of all the species for which a presence was inferred

(Dollo parsimony). To do this, we used the 100-way vertebrate phylogenetic tree from the UCSC genome browser. Phylogenetic no-

des were then manually matched to their official taxonomic names through TimeTree.org.82

Inference of orthologous transcription based on analysis of expression data
To improve our initial inference of orthologous transcription across vertebrates and our estimated transcriptional ages, we turned to

the transcripts that we assembled using raw RNA-seq data (see previous Methods subsections). To infer an orthologous region of a

human ORF as transcribed in a given species, we required non-zero overlap to a transcript with a minimum expression cut-off of 0.1

TPM. That cut-off was increased to 1 TPM in caseswhere the presence-absence pattern generated by the 0.1 TPMcut-off was highly

sparse and incompatible with a phylogenetic origin of a consistently expressed transcript at the common ancestor of the species,

which is what we are looking to identify here. These were defined as cases for which using a 1 TPM cut-off decreased by at least

50% the number of species descending from the common ancestor that had no inferred transcription. We additionally required

that less than 80% of the species with inferred presence shared a common tissue with expression (that is, if the presence-absence

pattern met the first criterion but the transcript was expressed in the same tissue in >80% of the species, the 0.1 TPM cut-off was

maintained). The stricter cut-off was applied in 43/715 cases.

For eachORF, a final set of species with inferred orthologous transcription was constructed by adding any extra species recovered

based on the analysis of raw expression data to the ones inferred using reference transcriptomes. A final timing of origination of tran-

script was then predicted for each ORF, as before. Overall, integrating the raw expression data led to a change of timing of origination

for 169/715 cases. Out of these 169, 17were found to have human-specific transcription (out of a total of 27 previously having human-

specific transcription). Expression levels for these 27 ORFs and their orthologous regions are shown in Figure S7.

Validation of timing or origination of transcript using other transcriptome sources
Transcripts assembled in two previous studies44,45 were used as a validation of our final inferred transcriptional ages. For Sarropou-

los et al., exon coordinates of their transcripts were converted to the assemblies used in this study using the UCSC liftOver tool and

overlaps were assigned using bedtools as described above. Any overlap was taken as presence of the transcript in that specific

species. Timing of origination was then calculated as described above, by taking the most recent common ancestor in the UCSC

vertebrate phylogenetic tree. For Necsulea et al., we inferred transcriptional ages in two different ways. First, as for Sarropoulos
Cell Reports 41, 111808, December 20, 2022 e5

https://ftp.ncbi.nlm.nih.gov/refseq/release/vertebrate_mammalian/
https://ftp.ncbi.nlm.nih.gov/refseq/release/vertebrate_other/
https://ftp.ncbi.nlm.nih.gov/refseq/release/vertebrate_other/
http://TimeTree.org


Article
ll

OPEN ACCESS
et al., we used overlap to exons (taken from the ExonBlock* files, main dataset) and then inferred ages from most recent common

ancestors. Second, we obtained correspondence from our human genes to the genes identified in that study using overlap of coor-

dinates of entire transcripts. Note that this is extremely permissive as sometimes the specific ORFs we are interested in will not even

be included in the exons of these transcripts, but we nevertheless included this approach to bemaximally conservative. Once we had

the correspondence of genes, we obtained the maximum inferred phylogenetic age of the family containing each gene, as calculated

by Necsulea et al. for their main dataset.

Identification of orthologous genomic regions and inference of presence of ancestral ORFs
For each of the 715 human ORFs, we identified its orthologous region in 99 vertebrate genomes based on the UCSC Genome

Browser 100-way, whole-genome alignments. The exact orthologous genomic regions corresponding to each exon of the human

ORF were extracted using custom Python scripts. The regions corresponding to the different exons were then stitched together.

For all ORFs, the orthologous region could be identified in a minimum of 4 other genomes. A multiple sequence alignment of each

ORF together with its orthologous sequences was then performed using MAFFT.74

For each ORF, we first pruned the UCSC 100-way phylogenetic tree using the gotree tool75 to keep only leaves corresponding to

species present in the alignment of orthologous regions. A phylogenetic tree following the pruned tree’s species topology was then

constructed from the multiple alignment of each ORF and its orthologous sequences, using RAxML76 (raxml-ng –evaluate –msa OR-

F_alignment.fa –model GTR + G –tree pruned_ORF_tree.nwk). Then, each multiple alignment and its corresponding tree were given

as input to FastML,77 to reconstruct the various ancestral sequences. The JC substitution matrix was used, and the ML method was

used for reconstruction of indels. The marginal ancestral reconstructions were then parsed.

We examined the reconstructed sequences of the human ancestors. The origin of the human ORFwas defined as themost ancient

human ancestor in which at least 70% of the reconstructed ancestral sequence was an intact ORF (length of ancestral ORF/length of

full ancestral sequence), i.e. any premature stop codons did not disrupt more than 30% of the length of the sequence (a 50% and an

80% cut-off was also used, seemain text for details). The reading frame usedwas always on the forward strand, starting from the first

position of the reconstructed sequence. If the ancestral sequence was longer than the human one, the length of the human sequence

was used as the denominator of the ratio (length of ancestral ORF/length of human ORF). If the length of the reconstructed sequence

was less than half the length of the human ORF, the ancestor was not taken into account, effectively considered as intact. Ancestral

sequences were counted as intact ORFs regardless of whether an ATG start codon was present or not. We distinguished cases for

which at least one disrupted (not intact) ancestor could be identified on a more ancient node than the one of predicted origin. For

these cases, we were thus able to provide positive evidence of de novo formation: a disrupted ancestor that preceded the most

ancient intact one. To be maximally conservative, we also conducted protein level similarity searches of all candidate ORFs, using

BLASTp, against the annotated proteomes of all "outgroup" species, i.e. those diverged prior to the predicted node of origin of the

ORF (proteomes downloaded fromNCBI’s RefSeq). Matcheswere deemed as significant if they had <10�5 E-value, 40% identity and

50% query coverage. Based on these matches, we reassigned the node of origin to the most recent ancestor of the expanded set of

species when necessary and removed de novo origin status. This was applied to 17 cases.

Todetect possible inconsistencieswithdenovoorigination,weperformedasearch for similarity to alreadyannotatedhumanprotein

sequences (Homo_sapiens.GRCh38.pep.all.fa file downloaded from ENSEMBL) using BLASTp with an E-value cut-off of 10�5, 50%

identity and 50% query coverage, providing as query our de novo originated ORFs. We recovered twomatches. One of themwas the

protein itself (CATP00000191117.1 - > ENSP00000493702.1, 100% identity). We confirmed from ENSEMBL that the annotated gene

(ENSG00000170846, which has only one protein associated) had the same predicted origin (Eutheria, from the Gene gain/loss tab) as

the onewe calculated, for bothORF and transcript. According to ENSEMBL, the gene also has two paralogues, which both originated

at the root of Eutheria. The second match came from ORF CATP00001059838.1. This ORF again matches part of an ORF of its own

gene (ENSG00000267360), but at 76% identity. The origin of the gene is more ancient (Boreoeutheria) than our predicted origin of the

ORF (Simiiformes), but this is expected since this is an upstream ORF, and not the main coding ORF of the transcript. Overall, this

search revealed no inconsistencies linked to human paralogues of our candidates.

The putative origin of each microprotein was defined as the earliest node on the phylogenetic tree on which both an ORF and tran-

scription were present in a locus, unless wewere able to detect a protein-coding signal using PhyloCSF (score >10), on the alignment

containing only the species descending from the node of ORF origination. See the following subsection for details. Out of 312 micro-

proteins for which ORF origination preceded transcription origination, only 33 satisfied this criterion, none of which had de novo

status.

Functional signatures and statistics
We extracted all SNPs from dbSNP51 within the coordinates of each of our ORFs that were not annotated as benign, using the

following command, for each exon:

Esearch -db snp -query CHR_NOand (START_COORD:STOP_COORD) NOT "benign"[Clinical Ssgnificance])" | efetch -format json

Detailed information for each SNP was then retrieved from the SNP’s page at dbSNP and ClinVar.

To calculate PhyloCSF46 scores, we placed the humanORF sequence and orthologous sequences in species descending from the

phylogenetic node of origin of the ORF in a FASTA file. We took the origin of the ORF and not the putative origin of the microprotein to

minimize cases of origin age underestimation due to incomplete transcript annotation, as mentioned in the main text. We then
e6 Cell Reports 41, 111808, December 20, 2022
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generated a codon-aware nucleotide alignment with the TranslatorX78 tool, keeping the reading frame unchanged. PhyloCSF scores

were then calculated based on these alignments, using the human sequence as reference and the –removeRefGaps option, search-

ing only in the first reading frame and employing the ‘‘vertebrates100’’ model. PhyloCSF was applied by Chen et al. on alignments

including sequences from 10mammals spanning the Euarchontoglires, and byHon et al. on alignments including 27mammalian spe-

cies. To identify selection/coding signatures on exemplar ORF CATP00001771233.1 we used two alignments: one containing all 47

orthologous sequences (not codon-aware) and one containing only the 11 primates (this alignment contained no change of frame).

On both alignments, we run PhyloCSF as above but with the -f 6 option to calculate a score for each frame, and the HyPhy program

FEL79 (default mode) and the PAML80 program codeml (model = 0, nsites = 0) to estimate global dN/dS ratios, using the phylogenetic

tree for the specific ORF reconstructed as described previously (the tree was pruned for use with the primates alignment). FEL and

codeml were run independently on all 6 frames of the alignment, which we generated. Before each run, we removed alignment po-

sitions containing in-frame stop codons.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistics were done in R version 3.6.2. Plots were generated using ggplot2.83 All statistical details including the type of statistical

test performed and exact value of n (n always represents number of ORFs or microproteins) can be found in the Results and figure

legends. Boxplots showmedian (horizontal line inside the box), first and third quartiles of data (lower and upper hinges) and values no

further or lower than 1.5*distance between the first and third quartiles (upper and lower whisker). Nomethodswere used to determine

whether the data met assumptions of the statistical approaches.
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