
Rice and McLysaght BMC Biology  (2017) 15:78 
DOI 10.1186/s12915-017-0418-y
REVIEW Open Access
Dosage-sensitive genes in evolution and
disease
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Abstract

For a subset of genes in our genome a change in gene
dosage, by duplication or deletion, causes a phenotypic
effect. These dosage-sensitive genes may confer an
advantage upon copy number change, but more
typically they are associated with disease, including
heart disease, cancers and neuropsychiatric disorders.
This gene copy number sensitivity creates characteristic
evolutionary constraints that can serve as a diagnostic
to identify dosage-sensitive genes. Though the link
between copy number change and disease is well-
established, the mechanism of pathogenicity is usually
opaque. We propose that gene expression level may
provide a common basis for the pathogenic effects of
many copy number variants.
Gene dosage matters
At the evolutionary level, gene duplication is an import-
ant and common process [1]; at the population level,
copy number variation is the most abundant kind of
genetic variation per base-pair [2]; and at the individual
level, gene expression is often noisy [3]. All of these ob-
servations add up to the conclusion that for many of
our genes there is good tolerance for changes in dosage.
Indeed, Sewell Wright argued that even the very
phenomenon of genetic dominance is suggestive of a
tolerance of gene dosage changes [4]. However, for a
significant fraction of the genome alteration of gene
dosage has deleterious effects. This is most plainly seen
in the association of copy number variants (CNVs) with
human disease, including heart disease, cancers,
diabetes and neuropsychiatric disorders, among others
[5–8]. This dosage sensitivity reflects the generally lin-
ear relationship between gene copy number and protein
product in most cases [9, 10].
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A dramatic but transient form of dosage alteration occurs
during every cell cycle where there is a drastic disruption to
the relative ratios of gene copy number, with early-
replicating DNA regions being twice as abundant as late-
replicating regions during S-phase. Dosage sensitivity would
predict that this should be compensated, and indeed elabor-
ate mechanisms exist to mitigate this imbalance—it was re-
cently discovered that in eukaryotes histone-mediated
dosage compensation mechanisms dampen expression
from early-replicating loci during cell replication, thus
rebalancing the gene products with those from late-
replicating loci [11, 12]. By contrast, in bacteria the differ-
ential ratio of early- and late-replicating genes is used as a
cell cycle signal [12]. These systems have deep differences,
but in both cases we see that even a transient change in
relative gene dosage has noticeable consequences.
Dosage sensitivity
There are several different ways in which gene dosage can
matter (Fig. 1). Haploinsufficiency, where a hemizygous
state does not produce sufficient gene product for correct
function, proposed by Wright as a source of dominant
negative effects [4], is perhaps the most intuitive of the dos-
age constraints and has long been recognised as a cause of
human disease [13], 22q11 deletion syndrome being just
one well-studied example [14]. A recent large survey of hu-
man genetic variation identified over 3000 genes in the hu-
man genome with a near-total absence of loss-of-function
alleles, suggesting that many of these are in fact haploinsuf-
ficient; over 70% of these were not previously associated
with disease [15].
By contrast, why the presence of a surplus copy of a per-

fectly good gene should be deleterious is less obvious.
Charcot-Marie-Tooth disease, a hereditary neuropathy, was
one of the first human diseases shown to be due to duplica-
tion of a dosage-sensitive gene, PMP22 [16, 17]. The fact
that some phenotypically normal individuals carry both a
duplication and a compensatory deletion of this gene
supports the dosage sensitivity model rather than any other
regulatory or structural effects as the underlying mechanism
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Fig. 1. (See legend on next page.)
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Fig. 1. Various types of dosage sensitivity. Dosage sensitivity can be due to any of several different mechanisms. a For some proteins there is a minimum
amount of active product required for normal function (haploinsufficiency). A hemizygous deletion or other loss of function allele will reduce the amount
of active product below the threshold for functionality. b Some proteins form inappropriate interactions at high concentration, such as protein
aggregation. These aggregates may themselves be toxic, or may phenocopy a deletion by removing the proteins from availability. c Dosage-balanced
genes have constrained relative stoichiometry, for example the ratio of gp6 protein to gp7 protein in phage HK97 must be correct in order to achieve
correct protein complex assembly. If gp6 is present in excess it preferentially forms large homomers, thus becoming unavailable to form the complex with
gp7. d A simplified, hypothetical example of concentration-dependent activity based on the splicing of pyruvate kinase M, where the concentration of the
splicing regulator determines its location of binding, which in turn determines which isoform is produced. Panel d is a modified from [25]
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behind the disease condition [18]. In some cases, especially
for intrinsically disordered proteins, the basis of pathogen-
icity may lie in an increased propensity for low-affinity off-
target interactions at high concentrations [19, 20]. For
example, extra copies of the α-synuclein gene (SNCA) are
associated with early-onset Parkinson’s disease, possibly
due to greater protein concentration increasing the likeli-
hood of protein aggregation [21, 22]. Though, mechanistic-
ally speaking, why protein aggregates should have such
devastating effects remains unclear [23].
Yet other genes are sensitive to both increases and

decreases in copy number: many developmental mor-
phogens act in a concentration-dependent manner
[24]; whether pyruvate kinase M (PKM) is spliced into
the adult or embryonic isoform depends on the
concentration of hnRNP proteins, with high concen-
trations in cancer cells resulting in the ectopic pro-
duction of the embryonic form [25]; and some sets of
genes have constrained stoichiometry such that devia-
tions from the normal ratio is deleterious, that is,
they are dosage balanced [26]. Members of protein
complexes may be particularly dosage balanced as de-
viations from the correct ratios of subunits can dis-
rupt the biochemistry of protein complex assembly in
non-linear ways, such that a 50% decrease in the
amount of one component can result in a greater
than 50% decrease in the amount of active product.
Similarly, and somewhat counter-intuitively, even an
increase in one of the components can result in a de-
crease in the amount of complete protein complex
produced [20, 27–32].
The dosage balance model contends that, for genes

that are in stoichiometric balance, any perturbation
of their relative ratios is deleterious [26, 32, 33].
Under this model, sets of dosage-balanced genes can
only change copy number in concert or not at all.
There are multiple lines of evidence for this model,
including: the copy number of different components
of the ribosome co-vary to retain stoichiometric bal-
ance [34]; in some cases an artificially induced over-
expression phenotype can be rescued by the
overexpression of an interacting partner [35]; and
genes whose products form protein complexes are
not normally duplicated [36].
Dosage-sensitive genes are duplicated by
polyploidy or not at all
The knowledge that some genes in the genome are sensi-
tive to copy number changes, should they occur, suggests a
model where these genes have persistent sensitivity to evo-
lutionary dosage changes, whereas other genes have no
such sensitivity. The tendency of a gene to be duplicated or
not is referred to as ‘duplicability’. The observation that
duplicability is a relatively stable property of a gene, with
some genes consistently found as singletons and others re-
peatedly independently duplicated across distant lineages
[37], supports the existence of ancient and persistent dos-
age constraints on genes. However, it is useful to remember
that these dosage constraints are not a limit on the absolute
number of copies of a gene, but on the ratio of a gene prod-
uct to other components of the cell, either in terms of over-
all concentration or in terms of specific interacting partners
[26, 27, 38–40]. So, the non-duplicability of dosage-
sensitive genes relates to one-by-one duplication or loss
and not to concerted events. Indeed, if a given set of
dosage-balanced genes were to be linked on a chromosome,
then a single segmental duplication including all of them
may not be deleterious [41].
By definition, even genes that are not normally ‘duplic-

able’ are duplicated by whole genome duplication (WGD;
or polyploidy). This event creates no deleterious imbal-
ance, because, even though all of the genes are duplicated,
the ratios remain unchanged. During the subsequent
period of extensive gene loss that has followed every
known polyploidy event [42] deletion of some, but not all,
of a set of dosage-balanced genes would be deleterious, be-
ing imbalanced. This leads to the prediction that such
genes should be preferentially retained through this period
of purging of paralogs [43]. Consistent with expectations
based on dosage sensitivity, we and others have observed
that genes that are not generally duplicable by small-scale
duplication (SSD) are in fact disproportionately retained
after polyploidy [44–48]. The patterns of general duplic-
ability by SSD and of retention after WGD are so contrast-
ing as to result in almost completely non-overlapping
groups of genes.
The dosage balance model prediction that WGD para-

logs (termed ‘ohnologs’ [42, 49]) should be enriched for
dosage-sensitive genes is supported by the observation
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that most ohnologs are unduplicated even in lineages
that diverged prior to the WGD event and do not ex-
perience subsequent duplications except if by another
WGD event [44, 47]. This duplication constraint extends
into recent population polymorphism: we found that
ohnologs are rarely observed in CNVs in healthy individ-
uals, whereas genes that are frequently copied by SSD
also commonly have benign CNVs [47]. In other words,
the general trend is that genes that can be individually
duplicated, are; by contrast dosage-sensitive genes are
duplicated by polyploidy, or not at all.

CNVs and dosage sensitivity
The existence of CNVs has been long known, but since
they were recognised as a significant category of genetic
variation 13 years ago [50] our understanding of how they
are generated and their phenotypic consequences has
grown. Like any kind of genetic variation, the global distri-
bution of CNVs is determined by demography and selec-
tion [51–53]. Many CNVs are selectively neutral [2],
sometimes even when present as homozygous deletions
[54]. Instances of positive selection include adaptations to
diet [55] and pathogen resistance [56]. However, a signifi-
cant number of CNVs are deleterious and associated with
disorders [57, 58], including developmental delay [6],
hearing loss [59], heart disease [7] and neuropsychiatric
conditions [60, 61].
Obviously, any CNV changes the copy number of genes

contained within its breakpoints, but it is not necessarily the
case that the phenotype of any given CNV is due to gene
dosage changes as the CNV will also potentially disrupt
genes, uncouple genes from their regulatory sequences, or
alter chromosome three-dimensional organisation [62–68]
(Fig. 2). Nonetheless, dosage sensitivity of the encompassed
genes is the most popular hypothesis to explain pathogenic
CNVs, with multiple examples known [69]. This view was
supported by an evolutionary analysis of gene duplication
and loss across mammals where we found that genes in
pathogenic CNVs have much more conserved copy number
than genes observed in CNVs in healthy individuals [48].
This observation is uniquely explained by copy number
constraints on the enclosed genes rather than any other
model of CNV pathogenicity.

Dosage sensitivity and genome evolution
Not surprisingly, dosage-sensitive genes have also played an
enormous role in the evolution of gene content and gene
expression of sex chromosomes. Not only did they precipi-
tate the evolution of elaborate dosage compensation
mechanisms [70–72], but they also have shaped gene con-
tent through both purifying selection and relocation of
dosage-sensitive genes to autosomes [73–77]. For other
dosage-sensitive genes that did not relocate to autosomes,
especially members of large protein complexes, we and
others have shown that the expression of sex-chromosome-
linked genes and their autosomal interacting partners has
evolved so as to maintain stoichiometric balance [78, 79].
Because dosage-sensitive genes are refractory to dupli-

cation events, and because duplications are often long,
encompassing multiple genes [80], the simple presence
of dosage-sensitive genes has incidental effects on neigh-
bouring genes. The likelihood that a duplication of a
given gene also includes a dosage-sensitive gene should
decrease with the physical distance between them. Using
ohnologs as a proxy for dosage-sensitive genes, we found
evidence in support of this model, as the closer a gene is
to an ohnolog the less likely it is to be duplicated [81].
This effect is sufficiently strong to create SSD and CNV
deserts in the human genome [81].
One of the principal mechanisms of generation of CNVs

is by non-allelic homologous recombination (NAHR; re-
combination events between different loci with high se-
quence similarity) [82]. Approximately 10% of the human
genome is subject to recurrent CNVs due to the existence
of NAHR hotspots [83]. These hotspots are created by the
presence of segmental duplications (low-copy repeat se-
quences) that are at least 95% identical at the DNA level,
at least 10 kb long, and located between 0.05 and 10 Mb
apart [84]. At least 2129 known recurrent pathogenic
CNVs occur at NAHR hotspots [85] and in at least two
cases new human disease-associated NAHR hotspots were
created by recent lineage-specific segmental duplication
events [17, 86]. In both cases there is an as yet unproven
claim that the duplication event was itself adaptive, thus
compensating for the risk of disease in offspring [86, 87].
It remains unknown how the propensity of segmental du-
plications flanking dosage-sensitive genes to generate
pathogenic CNVs has impacted upon genome evolution.
One might expect purifying selection to destroy the
NAHR hotspots around dosage-sensitive genes, perhaps
by genome rearrangement events that eliminate the prox-
imity of the segmental duplications.

Evolutionary patterns are an informative trait to
identify human disease genes
One of the recurrent pathogenic CNVs in humans occurs
at 22q11, resulting in 22q11 deletion syndrome, which has
a variable phenotype including heart defects, developmental
disorders and schizophrenia [14]. Similarly, recurrent
NAHR at 16p11.2 generates duplication and deletion
CNVs, both of which are pathogenic, but which have differ-
ent, ‘mirrored’ phenotypes impacting metabolism, develop-
mental delay and neuropsychiatric traits [88, 89]. At both
22q11 and 16p11.2 there is a large CNV but also a smaller,
‘critical’ CNV with the same phenotype. As such, in each
case the phenotype is considered to be due to dosage sensi-
tivity of some of the genes within the smaller regions. How-
ever, even within the critical regions the number of genes is



a

b

c

d

Fig. 2. Multiple different ways in which a CNV can have a pathogenic effect. a CNVs cause duplication and/or deletion of the enclosed genes. If
one or more of those genes is dosage-sensitive then there will be a consequent phenotype, usually deleterious. b, c Alternatively, CNVs with
breakpoints within a gene disrupt the gene by truncation (b) or formation of chimeras (c). Gene truncation will usually result in loss of function,
but may alternatively result in a gain of function, dominant negative effect. Chimeric genes have unpredictable effects, and may be pathogenic.
d Topologically associating domains (TADs) are structural units in the three-dimensional organisation of the genome and play a large role in
mediating gene–enhancer interactions and other aspects of gene expression regulation. TADs are isolated from each other by TAD boundaries,
which are determined by protein binding sites. CNVs encompassing TAD boundaries create new TADs. These can result in rewiring of gene
enhancer interactions including the isolation of a gene from its regulator or the placement of a gene under the regulation of an inappropriate
enhancer. Disruption of TADs has been associated with human disease [64–66, 68]
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still quite large, numbering 28 and 26 for 22q11 and
16p11.2, respectively. An important challenge is to identify
the most likely candidate genes for the phenotype from
among these.
Evolutionary analysis provides a powerful method for

pinpointing the dosage-sensitive genes within these and
other CNV regions. Our detailed inspection of the evo-
lutionary copy number conservation of the genes in the
22q11 deletion syndome region revealed that orthologs
of 16 out of the 28 genes are present (never lost) across
13 mammalian genomes analysed [48]. Similarly, in the
16q11.2 region, 13 out of the 26 genes in the critical re-
gion have completely conserved copy number (1:1
orthologs) in all mammalian genomes analysed (Fig. 3).
These completely conserved genes fit the profile ex-
pected of dosage-sensitive genes, and as such are attract-
ive candidate genes for the syndrome.
Trisomies are chromosomal abnormalities that are at

least conceptually comparable to large CNVs. Trisomy 21,
which results in Down’s syndrome, is the most common
human trisomy, occurring in approximately 1 in 700 live
births [90]. The next most common human trisomies, 18
and 13, can survive briefly post-birth and result in
Edward's syndrome and Patau syndrome, respectively.
Other trisomies occur but are inviable [91]. The high fre-
quency of trisomy 21 reflects the fact that it results in a
relatively mild syndrome.
Fig. 3. Evolutionary conservation of copy number of genes in the 16p11.2
across the top, with Mbp co-ordinates indicated above and gene names b
exhibits the same phenotype as the larger CNV and so is considered suffici
duplicated it is represented by a green dot, and if not found (presumed de
is unchanged with respect to human. Where a given gene has 1:1 ortholog
Genes in the region that were not amenable to this analysis are indicated
BOLA2, SLX1 and SULT1A are part of a human-specific duplication with para
the susceptibility to NAHR [86]
The pathogenic effects of the trisomy are likely to be due
to a combination of the effects of the specific genes on the
chromosome [47, 90] and general expression dysregulation
[92]. In yeast the phenotype of an aneuploidy is largely in-
dependent of the identity of the chromosome [93], suggest-
ive of a general disruption, not specific to the biochemical
function of particular genes. Why human trisomy 21, 18
and 13 in particular are unusually viable is probably related
to the low number of genes encoded on each chromosome.
However, as with pathogenic CNVs, it is likely that only a
subset of these are dosage sensitive. There is a very inter-
esting correlation with the number of ohnologs (here again,
a proxy for dosage-sensitive genes) and trisomy severity.
Human chromosome 21 has the most common (least se-
vere) trisomy and the smallest number of ohnologs. Simi-
larly, chromosomes 18 and 13 have the next smallest
numbers of ohnologs, and the next highest trisomy inci-
dences, respectively (Table 1). By contrast, none of the
mouse trisomies is viable (only mouse trisomy 19 survives
1–4 weeks post-birth [94]). However, there is a similar cor-
relation between the number of ohnologs and the gesta-
tional survival of trisomies (Table 2). At least for human
chromosome 21 we found that this number of ohnologs is
surprisingly small even given its small number of genes
[47]. Three-quarters of previously reported Down’s syn-
drome candidate genes were independently discovered by
this evolutionary analysis, but other genes were also
recurrent CNV region. The genes in the 16p11.2 region are illustrated
elow. The critical region (dashed outline) indicates a smaller CNV that
ent for the syndrome. For each of the mammals, if the ortholog is
leted) it is represented by an orange dot. Otherwise the copy number
s across all 13 mammals tested this is indicated by a red vertical stripe.
by greyed-out names. Copy number conservation data are from [48].
logs present on both flanks of the critical region and which increased



Table 1 Human autosomes with common trisomies, in
ascending order of number of ohnologs

Human
chromosome
number

Number of dosage-
balanced ohnologsa

Trisomy
syndrome

Frequency
(number of live
births)b

21 61 Down's 1/700

18 98 Edward's 1/5000

13 138 Patau 1/16,000
aIdentified from gene trees in Ensembl v86 [109] as genes that duplicated at
the base of the vertebrate tree with no subsequent SSD
bFrequency data from [90] and
ghr.nlm.nih.gov/trisomy-18; ghr.nlm.nih.gov/trisomy-13
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identified as under evolutionary constraint that were not
previously recognised to have an association with the syn-
drome. Thus, we argued that these genes, distinguished by
their characteristic pattern of evolutionary copy number
conservation, are interesting candidate genes for Down’s
syndrome [47]. Though aspects of the syndromes are
clearly related to the specific genes on the chromosome,
the correlation with number of genes encoded and perhaps
specifically with the number of ohnologs suggests a general
relationship with the extent of the burden of dosage-
sensitive genes.

Gene expression burden as a possible explanation
for duplication phenotypes
As mentioned earlier, we and others found that genes
that are successfully duplicated by SSD are usually not
retained after WGD, and vice versa [46, 47, 81, 95, 96].
Curiously, these contrasts also carry over into the differ-
ences in gene expression level and coding sequence
length. Whereas in human the median expression for
SSD paralogs is 13.4 RPKM (reads per kilobase of tran-
script per million mapped reads) and the median CDS
length is 1206 nucleotides, these values are much higher
for ohnologs (23.7 RPKM and 1557 nucleotides, respect-
ively). A similar pattern is seen in paramecium [97].
Table 2 Mouse autosomes in ascending order of number of
ohnologs

Mus musculus
chromsome number

Number of dosage-
balanced ohnologsa

Trisomy survivalb

18 194 To term

16 201 14 days post-
fertilisation—term

12 218 12–17 days post-
fertilisation

13 232 13 days post-
fertilisation—term

19 235 1–4 weeks post
birth

aIdentified from gene trees in Ensembl v86 [109] as genes that duplicated at
the base of the vertebrate tree with no subsequent SSD
bMouse trisomy survival data obtained from [94]. No unlisted trisomies survive
past 19 days post-fertilisation
These contrasting patterns of expression for SSD para-
logs and ohnologs could be explained if there are very dif-
ferent consequences of duplicating one (or a few) highly
expressed gene(s) by SSD, compared to balanced duplica-
tion of all genes simultaneously by WGD. These different
consequences might arise not only because some genes
have dosage constraints (such as the requirement to main-
tain balanced ratios between specific gene products) and
thus cannot be duplicated individually [38, 47, 98], but
also because an extra copy of a highly expressed gene may
be costly in terms of cellular resources [99–101].
This latter idea is consistent with observations from

yeast where it was shown that overexpression of highly
expressed genes has a greater negative effect than of less
highly expressed genes [35]. The reported experiments
linked the deleterious phenotype to the protein burden
rather than the protein biochemical function (the pheno-
type was recapitulated when the protein sequence was
replaced by green fluorescent protein (GFP)) but did not
dissect the nature of that burden.
WGD defies this cost, as can be seen plainly in the

readiness with which plant genome ploidy increases
[102], an extreme example being oilseed rape which has
a 72-fold increase since the origin of angiosperms owing
to multiple WGD events [103]. This makes intuitive
sense if the WGD increases and draws down cellular re-
sources evenly, with no net difference compared to the
pre-WGD genome. It has previously been shown that
the greater the proportionate increase in copy number,
the greater the phenotypic consequence; that is, adding
one extra copy to a haploid is more dramatic than add-
ing one extra copy to a diploid [30]. Thus, the greater
the number of copies of a given gene, the lesser the im-
pact of one more copy. One could therefore predict that
the effects of SSD in a genome with a history of multiple
WGD events, like that of oilseed rape, would be much
reduced compared to an outgroup.

Is gene expression a zero-sum game?
The idea of a cost associated with gene expression has
rich theoretical support and experimental evidence
[99–101, 104–106]. Furthermore, highly expressed
genes are expected to be particularly dosage sensitive
[35, 97]. Protein expression is a significant fraction of a
cell's energy budget [99, 100, 107]. The cost of expres-
sion can be expanded to include a model where overex-
pression of one locus is not merely a waste, but actually
sequesters cellular resources away from other genes.
Clearly the number of RNA polymerases available for
transcription and the number of ribosomes available for
translation are both finite, but are they sometimes lim-
iting? Experiments in Escherichia coli found the rather
surprising result that overexpression of one locus could
lead to a depletion of ribosomes [104]. Other
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experiments showed that the cost of overexpression is
not due to protein biochemical function or amino acid
usage, but can be fully explained by the cost of the
process of gene expression [101]. Rather than simply re-
quiring resources, overexpression of some genes should
naturally titrate out polymerases, ribosomes and other cel-
lular resources so that they become unavailable for other
genes. In other words, a duplication of a ‘greedy’, highly
expressed gene might exert a deleterious effect by indir-
ectly lowering the expression of other genes. This model
views gene expression as a ‘zero sum game’, where an in-
crease in one gene may cause decreased output from an-
other. This is consistent with a recent model of human
disease dubbed the ‘omnigenic’ model, where regulatory
changes to any gene expressed in a disease-relevant tissue
may contribute to disease whether or not there is a direct
mechanistic link to the disease phenotype [108]. The au-
thors of the omnigenic model suggest that gene regulatory
networks are so interconnected as to allow changes in any
expressed gene to affect any other.
Under the ‘zero sum’ model the barriers to duplica-

tion, that is, the costs of duplication, will sometimes lie
not in the biochemical function of the gene that has
been duplicated (though this is undoubtedly the case in
many instances) but in the cost of the process of gene
expression in terms of both energy (the cell spends
seven ATPs for every amino acid of a protein) and the
sequestration of the cell machinery such as polymerases
and ribosomes. If RNA polymerases and ribosomes are
limiting factors in the amount of gene expression pos-
sible from a given cell, then titration of these macromol-
ecules by the doubling of a long, highly expressed gene
would have knock-on consequences for the expression
of other highly expressed genes, which may become re-
duced to pathogenic levels. Notably, this cost would not
be incurred in WGD because all components of the sys-
tem, including expression machinery, are duplicated
equally, and all ratios remain constant.

Outlook – Gene expression as a keystone to
understanding copy number constraints?
This view of gene dosage sensitivity may sit alongside
other more well-established modes of dosage sensitivity
[30]; however, it is currently speculative. In particular one
must query whether duplication of one highly expressed
locus would have sufficient impact on cellular resources
when expressed at physiological levels to have any effect.
The costs ought to matter more in rapidly proliferating
cells, which may limit this to microbial organisms [100],
but they may also be relevant for quickly growing tissues.
This is an interesting area to explore as it has the potential
to explain some common trends in evolutionary gene du-
plication by different mechanisms and link this propensity
to disease phenotypes of human CNVs and trisomies.
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