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INTRODUCTION

Though all biologists deal with information, only
recently have the computational challenges of
systematically collecting, storing, organising, man-
ipulating visualising and analysing large amounts
of biological information come to be widely
appreciated. The cause of this is the explosive
growth of genomics. The term bioinformatics was
originally coined for the application of information
technology to large volumes of biological, and par-
ticularly genomic, data. The field of bioinformatics
has come to be intermingled with traditional
computational biology and biostatistics, which
are strictly concerned not with how to handle
the information itself, but rather how to extract
biological meaning from it. Thus, bioinformatics,
in its broad sense, can be seen as providing both
the infrastructure and the scientific framework
in which biologists take information and use
computers to help convert it into knowledge.

Despite the relative youth of the field as a
recognised discipline, there is an impressive diver-
sity of bioinformatics resources currently available.
By necessity, we only focus on a small slice of
this diversity here. We pay particular attention
to sequence analysis because of its centrality to
genomics. We also do not attempt to provide
specific protocols, as the specific needs of users vary

greatly. The resources we describe range drastically
in sophistication from little tested programs posted
on graduate student web pages to very stable and
complex databases maintained by governmental
agencies. The better ones typically provide manuals
and tutorials, often containing descriptions of
the underlying principles. The reader is strongly
advised to consult the documentation available for
each tool.

Though a wide array of commercial resources
exist, some of which are ideally suited to specific
tasks, many of the most fundamental and long-
lived bioinformatics tools are freely available. For
this reason, we describe primarily non-commercial
software in this chapter. Many of the databases
and analysis tools we describe are hosted by
government or academic research centres and
can be accessed via user-friendly web interfaces.
Tables 4.1 and 4.2 list the Uniform Resource
Locators (URLs) for all the online resources that
are discussed in the text.

WHAT IS OUT THERE AND HOW TO GET IT

Collectively, online databases allow access to a
staggering quantity of data. This partly reflects
the way much biological data is now collected.
Genome projects popularised the concept of
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Table 4.1 URLs for plant genome informatics tools and resources discussed in this chapter

Resource URL Description

AtRepBase nucleus.cshl.org/protarab/AtRepBase.htm Repeat sequences in Arabidopsis
BioMail www.biomail.org/ Pubmed search robot
BLOCKS blocks.fhcrc.org/ Protein family alignments
Comprehensive Microbial Resource www.tigr.org/tdb/mdb/mdbcomplete.html Microbial genomes and analysis tools
DDBJ www.ddbj.nig.ac.jp/ Primary sequence database
Distributed Annotation System www.biodas.org Software for managing genome

sequence data
EMBL Nucleotide Sequence www.ebi.ac.uk/embl/index.html Primary sequence database

Database
EMBOSS www.emboss.org/ Sequence analysis software
Enzyme Commission Database www.expasy.ch/enzyme/ Enzyme nomenclature
Genbank www.ncbi.nlm.nih.gov/Genbank/index.html Primary sequence database
Gene Expression Omnibus (GEO) www.ncbi.nlm.nih.gov/geo/ Gene expression database
Gene Indices www.tigr.org/tdb/tgi.shtml Non-redundant gene sets

for many organisms
Gene Ontology Consortium www.geneontology.org/ Controlled vocabulary

for gene function
GeneNet www.mgs.bionet.nsc.ru/mgs/systems/genenet/ Gene network data and analysis tools.
GOBASE megasun.bch.umontreal.ca/gobase/ Organelle genome database

gobase.html
GOLD igweb.integratedgenomics.com/GOLD/ Information about genome projects

eukaryagenomes.html
Graingenes wheat.pw.usda.gov/index.shtml Genomic database for wheat, oat,

barley, rye and sugarcane
Gramene www.gramene.org/ Comparative genome analysis

in the grasses
HMMer hmmer.wustl.edu/ Profile hidden Markov model software
HYPHY peppercat.stat.ncsu.edu/∼hyphy Software for analysis of

sequence evolution
Indiana University iubio.bio.indiana.edu/soft/molbio/ Bioinformatics Software

Molecular Biology
Software Archive

InterPro www.ebi.ac.uk/interpro/ Integrated database of protein
family signatures

Klotho www.ibc.wustl.edu/klotho/ Biological compound database
MaizedB www.agron.missouri.edu/ Maize genomics
Mendel Plant Gene Names genome-www.stanford.edu/Mendel/ Nomenclature for sequenced

aboutMendel.html plant genes
MIAME www.mged.org/Workgroups/MIAME/ Microarray annotations

miame.html working group
MMDB www.ncbi.nlm.nih.gov/Structure/ 3D-biomolecular structures
PAML abacus.gene.ucl.ac.uk/software/paml.html Software for analysis of sequence

evolution
PDB www.rcsb.org/pdb/ Primary structural database
Pfam www.sanger.ac.uk/Software/Pfam/ Protein family signatures
PHYLIP evolution.genetics.washington.edu/phylip.html Software for phylogenetics
Phylodendron iubio.bio.indiana.edu/treeapp/ Software for drawing phylogenetic trees
PLACE www.dna.affrc.go.jp/htdocs/PLACE/ Plant cis-acting regulatory elements
Plant Genomes Central www.ncbi.nlm.nih.gov/PMGifs/Genomes/ Plant genomics database

PlantList.html
PlantCARE sphinx.rug.ac.be:8080/PlantCARE/cgi/ Plant cis-acting regulatory elements

index.html
PlantGDB www.zmdb.iastate.edu/PlantGDB/ Plant ESTs and comparative gene

modelling
PLANTncRNAs www.prl.msu.edu/PLANTncRNAs/ Plant non-protein coding RNAs
Primer3 www-genome.wi.mit.edu/cgi-bin/primer/ Primer design

primer3 www.cgi

Continued
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Table 4.1 Continued

Resource URL Description

PRINTS www.bioinf.man.ac.uk/dbbrowser/PRINTS/ Protein family signatures
ProDom prodes.toulouse.inra.fr/prodom/doc/ Protein family signatures

prodom.html
PROSITE www.expasy.org/prosite/ Protein family signatures
Protein Information pir.georgetown.edu/ Protein sequence database

Resource (PIR)
PubCrawler www.pubcrawler.ie/ Pubmed and Genbank search robot
PubMed www4.ncbi.nlm.nih.gov/entrez/query.fcgi Biological literature
SMART smart.embl-heidelberg.de/ Protein family signatures
Salk Institute signal.salk.edu/cgi-bin/tdnaexpress Insertion mutant database for Arabidopsis

Arabidopsis Gene
Mapping Tool

Solanaceous Genome Network www.sgn.cornell.edu/ Genomic database for tomato, potato
and pepper

Stanford Microarray Database genome-www5.stanford.edu/MicroArray/SMD/ Microarray data repository
SWISS-PROT/TrEMBL www.expasy.org/sprot/ Protein sequences
TAIR www.arabidopsis.org/ Arabidopsis thaliana genomic resources
TIGRFams www.tigr.org/TIGRFAMs/ Protein family signatures
TRANSFAC transfac.gbf.de/TRANSFAC/index.html Transcription factors and binding sites
TreeView taxonomy.zoology.gla.ac.uk/rod/treeview.html Software for drawing phylogenetic trees
UKCropNet ukcrop.net Crop genome databases and

comparative mapping tools

high-throughput, highly automated biological
data factories, in which data is systematically
collected with the express purpose of facilitating
as-yet-unknown downstream applications. As a
result, the value of such data is only realised when
it is made accessible to the research community as
a whole.

The growth in the size of Genbank (Benson
et al., 2002), the DNA and protein sequence
repository jointly maintained by the National
Center for Biotechnology Information (NCBI), the
European Molecular Biology Laboratory (EMBL)
and the DNA Databank of Japan (DDBJ), is
legendary. Genbank contained 14.4 billion base
pairs by the end of 2001, 200 times the number
of base pairs in the database just ten years earlier.
In step with the growth in sequence data, a wide
variety of different types of data have become
available. These run the gamut from raw sequence
data to highly derived computational predictions
of protein structure and biomolecular interactions.

Unlike Genbank, which archives sequence data
from all organisms, many database resources are
organism specific. A variety of crop and model-
plant specific genomic databases are accessible
through UKCropNet. These include GrainGenes,

(which holds molecular and phenotypic informa-
tion on wheat, barley, oats, rye and sugarcane),
and MaizeDB (which performs a similar service for
maize). Some databases are specific to somewhat
larger taxonomic assemblages. For example, the
Gramene database is a recent effort that aims to
integrate genomic information from among all
grasses using the rice genomic sequence as a focal
point (Ware et al., 2002).

It can be helpful to recognise a distinction
between primary data repositories, on the one
hand, and derivative databases that offer a
regularly updated analysis of data from primary
repositories, on the other. Genbank is an example
of a primary repository. Pfam, a protein sequence
signature database, is an example of one that
is derived. Derived databases in plant genomics
frequently only include those plant systems having
the most abundant data. One example is the set
of Gene Indices at The Institute for Genomic
Research (TIGR), which is a collection of very
focussed databases, each covering a different plant,
animal, protist or fungal species (Quackenbush
et al., 2001). Each Gene Index computationally
assembles the non-redundant set of gene sequences
for that organism, with links to expression,
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Table 4.2 Internet jump stations for bioinformatics tools

Institution URL Some available tools

European Bioinformatics http://www.ebi.ac.uk/Tools/ • SRS—Sequence Retrieval Software
Institute (EBI) • Sequence similarity search tools

(including fast true Smith–Waterman searches)
• 3D structure analysis tools
• Sequence alignment
• Protein motif detection
• Sequence repeat discovery
• Sequence translation
• Primer detection
• DALI—protein 3D structure similarity search tool

Japanese Genome Net http://www.genome.ad.jp/ • Sequence similarity search tools
• Multiple alignment
• Sequence motif search

National Centre for http://www.ncbi.nlm.nih.gov/Tools/ • PubMed–medline database browser
Biotechnology • Entrez–sequence database browser
Information (NCBI) • BLAST–sequence similarity search tool

• Electronic PCR
• ORF (Open Reading Frame) Finder
• VAST–protein 3D structure similarity search tool

Pasteur Institute http://bioweb.pasteur.fr/intro-uk.html • BLAST
• ClustalW
• EMBOSS
• PHYLIP
• Primer design
• RNA analysis

Swiss Institute of http://www.expasy.org/ • Sequence similarity search tools
Bioinformatics (SIB) • Patterns and profile searches

• Sequence alignment (including T COFFEE)
• Protein structure prediction
• Transmembrane region prediction
• Post-translational modification prediction
• 2D PAGE analysis

homology and other information. Those plants
for which there exist sufficient publicly available
sequence data are included. This includes fourteen
species at the time of writing. Because it was the
first plant nuclear genome to be sequenced in its
entirety, Arabidopsis thaliana is sometimes the sole
plant representative in other genomic databases.
An example of this is MODBASE, which con-
tains homology modelled protein structures using
predicted amino acid sequences from a variety of
completed genomes.

Plant biologists are, of course, also interested
in plant symbionts and disease causing organisms.
A number of plant pathogenic bacteria and fungi
have either been sequenced in their entirety, includ-
ing Agrobacterium tumefaciens (Goodner et al.,
2001), Ralstonia solanacearum (Salanabout et al.,

2002) and Xylella fastidiosa (Simpson et al., 2000),
or are the subject of ongoing sequencing projects,
such as Magnaporthe grisea (Zhu et al., 1997),
Pseudomonas syringae pv. tomato and Xan-
thomonas campestris. Completed sequence is also
available for the legume nodule-associated mutu-
alist Sinorhizobium meliloti (Capela et al., 2001).
In addition, a variety of plant viral genomes have
been deposited in Genbank. The Genomes OnLine
Database (GOLD) is a regularly updated on-
line listing of prokaryotic and eukaryotic genome
projects that have been completed or that are under
way. TIGR offers what it calls the Comprehensive
Microbial Resource database, which allows explo-
ration and comparison of the annotated microbial
sequences. Unfortunately, genomic information
for metazoan plant symbionts, such as pathogenic
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nematodes and insect herbivores, is much less
abundant and likely to remain that way for some
time.

An excellent resource to the world of genomic
databases is the annual database issue of the
journal Nucleic Acids Research, published on the
1st of January each year (www3.oup.co.uk/
nar/database/c/). In addition to written descrip-
tions of dozens of different databases, a list of links
to hundreds of databases, organised by category,
is maintained online. Publications describing
online databases quickly become obsolete as new
databases spring up and old ones change, and
no list (online or otherwise) could hope to be
comprehensive, but this is a good place to start.
Website addresses (URLs) for databases and
resources discussed in this chapter are provided
in Table 4.1, while major web jump stations for
genomics and bioinformatics are given in Table 4.2.

The Growing Role of Standards

The meanings of biological terms are often slippery
and operational. For instance, ‘gene function’ can
easily mean different things to different practi-
tioners. Although it may be preferable, in some
cases, to allow for ambiguity rather than force
misguided precision, computers are not at all
adept at handling ambiguity. Thus, there has been
much effort expended in adopting standardised
terminologies, with clear relationships defined
among the terms. Such language standards are
referred to as controlled vocabularies, or ontolo-
gies. Ontologies provide transparency of meaning
to users and greatly facilitate inter-communication
among databases.

One of the oldest systematic attempts to
standardise plant gene nomenclature is the Mendel
Plant Gene Names Database and its derivatives,
which provide a useful categorisation of known
plant genes and their sequences (Lonsdale et al.,
2001; Price et al., 2001). The Enzyme Commission
Database, which is taxonomically broader, offers
a heavily used classification system that organises
enzymes hierarchically by function. An even more
ambitious effort is that of the Gene Ontology
(GO) Consortium, which works to produce a
dynamic controlled vocabulary, valid across all
organisms, that can accommodate accumulating
and changing knowledge of gene function (The

Gene Ontology Consortium 2001). GO recognises
three independent ontologies for genes and gene
products:

(i) Molecular function, which is specific to an
individual gene product (e.g. DNA helicase)

(ii) Biological process, which is coordinated by
multiple products (e.g. mitosis)

(iii) Cellular component, which describes the
physical localisation of a gene product (e.g.
nucleus)

Controlled vocabularies are not restricted to gene
or protein function. A number of plant databases
(including TAIR—The Arabidopsis Information
Resource, Gramene and MaizeDB) are collaborat-
ing to provide a controlled vocabulary for plant-
specific terms such as anatomy, morphology and
development (The Plant Ontology Consortium, in
press).

In addition to controlled vocabularies, there is
an important role for standards that define the
salient features of particular kinds of data. For
example, a group has been working to develop
a standard for the minimum information about
microarray experiments (MIAME). The diversity
of experimental and analytical approaches to
microarray expression data could potentially be a
major barrier to the verification and integration of
such data by the research community as a whole.
MIAME is a set of evolving guidelines designed
to ‘facilitate the establishment of databases and
public repositories and enable the development of
data analysis tools’ (Brazma et al., 2001).

Each of these approaches at facilitating trans-
parent communication among multiple users and
databases has slightly different goals and guiding
philosophies. Some of the earliest and most suc-
cessful initiatives to date in this area have tackled
the practical, and limited, goal of establishing
concrete relationships among the entities in a
small number of related databases. The InterPro
database, for example, provides a single point of
entry for searching a large number of different pro-
tein signature (motif and domain) databases, in-
cluding PROSITE, PRINTS, ProDom and Pfam,
SMART, and TIGRFams (Apweiler et al., 2001).

Interface Issues

The interface one uses to interact with a database
is partly a decision of the database developers.
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But frequently, multiple options are available to
the user. In such cases the choice of interface
may determine the complexity of the queries
that are possible. In principle, interfaces can
be designed to be largely independent of the
database implementation. Here we discuss the SRS
system provided by EMBL, and the Entrez system
provided by the NCBI.

SRS (Sequence Retrieval System) is an inte-
grated system providing an interface to multiple
databases, including sequence databases, OMIM
mutations database, protein structure databases,
gene family databases, metabolic pathway
databases, Medline and many more. The complete
list of databases can be seen on the starting page.
The basic procedure is to select a database (or
databases), and then perform a query. A basic
query can be performed in the ‘Quick Search’
box on the top page, or through the standard
query form. It is possible to perform complicated
database queries with relative ease through the
SRS query forms. For example, requesting all
the annotated introns within Arabidopsis thaliana
genes using the ‘extended query form’. SRS will
automatically save your performed queries and
results (available through the ‘results’ tab on
the navigation bar) which you can later exploit
by asking for entries that are shared or unique
between several sets of runs. One of the other
powerful aspects of SRS is its ability to link data
from different databases. So, for example, if you
are looking at an EMBL (Genbank) entry (or
group of entries) which codes for one or more
proteins, you may link to the SWISS-PROT
protein database (described below) to retrieve the
protein sequences and the excellent annotation
that goes along with them. You may also launch
BLAST or Fasta similarity searches, and ClustalW
alignments (all described below) from within SRS.
A useful user’s guide to SRS can be found under
the ‘information’ link on the top SRS page.

One can also access the data at NCBI by multiple
routes, collectively referred to as the Entrez system
(Schuler et al., 1996): through a simple keyword
search using the text box on the NCBI homepage,
through an advanced search from on the NCBI
webpage that allows the user to enter a Boolean
statement (combinations of logical AND, OR
and NOT operators with search terms that are
specific to individual data fields), through Network
Entrez (a Graphical User Interface, or GUI,

program on the user’s computer that queries the
database remotely), and through Batch Entrez (a
process allowing the user to save multiple database
records on a local computer—these records may
be specified in a file containing a list of accession
numbers uploaded from the user’s computer, or by
a normal database search). In addition, one can do
a similarity search of the sequences in the database
(i.e. BLAST–described below) and then access the
individual data records that are returned via direct
HTML-formatted URL links. Using the same
HTML-formatted query syntax as found in the
BLAST output, one can access individual records
over the network using homespun programs.
Alternatively, one can download the regularly
updated sequence databases from the FTP site to
perform local searches. Most of the same access
routes can be used to obtain data from any of the
other databases hosted at NCBI, such as PubMed
(literature database), and MMDB (protein and
nucleic acid 3D structure database; Wang et al.,
2002). However, NCBI is exceptional in this regard,
and most database developers typically offer a
much more limited range of access points to the
data.

At least in principle, submission of data to
a remote database can also be accomplished
in any number of ways. In the major primary
sequence databases, users submit all new records.
NCBI offers a web-based submission tool for this
purpose called Bankit, and also a GUI application
called Sequin which runs on the user’s computer,
allows error-checking, long submissions and, most
importantly, batch submissions. The entries in the
PubMed literature database are supplied by the
publishers. The MMDB database, by contrast,
derives all of its records from another protein
structure database (see below), but excludes certain
records based on a priori criteria (those based
on theoretical models). Some databases display
the results of an analysis pipeline that operates
on data derived from elsewhere; this is the case
for the TIGR Gene Indices (described above). As
discussed below, the route(s) of submission and
the amount of scrutiny each record receives are
critical features in judging the potential utility and
limitations of a database.

Databases are often classified as object-oriented,
relational or hybrid. The definition of these terms
is beyond the scope of this volume, but it is helpful
to recognise that object-oriented and relational
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databases require different technologies to be
accessed. The major object-oriented databases in
the genomics community use AceDB, a software
system devised initially for the Caenorhabdites
elegans genome project by Durbin and Thierry-
Mieg (1991). Many of the USDA-ARS and
UKCropNet-sponsored databases employ AceDB.
The interface to these databases is through AceDB
Query Language, or AQL, a language which
provides the basic tools needed to load, retrieve,
filter, summarise and sort data in an AceDB
database. By contrast, many recently developed,
large-scale databases are relational, which means
that they are structured as multiple tables (similar
to spreadsheets) that are linked by the entries
in particular columns (so-called keys). These
databases use some variant of Standard (or
Structured) Query Language (SQL). Although
the syntax is not identical, both AQL and SQL
use similar keywords, allow analogous operations
and are useful additions to the arsenal of the
bioinformaticist. Many database interfaces are
simply restrictive wrappers for AQL or SQL
queries; being able to formulate such a query
directly allows much greater flexibility and power.

Curation, Updates and Reliability

Just as in any other scientific endeavour, it is
important to understand the limitations of the
data when undertaking a bioinformatic analysis.
Databases vary in their submission standards, the
level of curation, update policies and procedures
for detecting and resolving inconsistencies or
redundancies. An excellent example is the problem
of assigning tentative functions to proteins on the
basis of DNA or amino acid homology. The biolog-
ical role of only a very small number of proteins has
been experimentally determined. It is frequently
the case that assignments are made based on the
annotations of closely related sequences. These
annotations can themselves be indirect. Thus,
functional annotation may be propagated through
a chain of sequence relationships resulting in the
erroneous assignment of function to a protein that
is only distantly related to that for which function
has been experimentally determined.

The route by which data enters the database
is critical. For Genbank, the initial depositor of
a record is the only party with permission to

update the record. Though a versioning system
exists to allow updates to records, this is generally
only used by high-throughput sequencing facilities.
Sequence corrections and updated annotations are
otherwise exceedingly rare. Although Genbank
has mechanisms for screening submissions to
ensure that all records are complete and self-
consistent, they do not exercise editorial control
over the accuracy of sequences or annotations.
Thus, it is often useful to retain a healthy degree of
scepticism when analysing these data. By contrast,
the protein database at SWISS-PROT is highly
curated, with efforts to keep current with the lite-
rature on each protein and to incorporate the
knowledge of outside expert referees. With the
exception of a few resources such as SWISS-
PROT, there is generally an inverse relationship
between the size of the database and the amount of
human oversight. However, one cannot conclude
that a small database is necessarily more a reliable
one; a problem with some of the small, highly
curated databases is that they sometimes do not
have well-defined or rigorously enforced curatorial
policies.

A related issue is the extent of documentation
and the transparency of curatorial policies. Many
sites have minimal documentation online, though
some of these are more fully described in published
papers. One consequence is that it is sometimes
not obvious to the casual user that a site has
a strong taxonomic (or other) bias. For many
genomic databases, the hidden taxonomic bias
is at the expense of plant data. Even when
present, database documentation is not always
upfront about problems of representation. This
problem is particularly acute in smaller molecular
biology databases, which are often focussed on
mammalian, or other animal, systems.

Despite the best efforts of database developers,
biological knowledge is inherently dispersed. In
addition, there are often conflicting ideas about
the same biological entity, such as a gene model.
A partial solution to this has been adopted by
the creators of the Distributed Annotation System
(DAS). With DAS, a single ‘client’ collects genome
annotation information from multiple remote
‘servers’ (including potentially the user’s own local
database) and displays it to the user in an integrated
fashion. This frees the user from reliance on a
single, possibly static, version of the annotation.
DAS achieves cross-platform interoperability by
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using the eXtensible Markup Language (XML), a
very flexible and widely used web protocol for the
exchange of data. TIGR manages a DAS server for
the Arabidopsis genome data.

Data Manipulation

Increasingly, molecular biology studies use
databases not just to retrieve individual records,
but as a source of large datasets that can be
explored to test a hypothesis or search for a
pattern. The data often need to be post-processed,
and sometimes integrated among different
sources, before they can be effectively run through
an analysis pipeline. One may need to convert
DNA sequence files into a format that can be
read by BLAST (see below), or transfer a data
file designed for input into one application into a
different format. In some cases, general purpose
tools have been written to accomplish this. For
example, NCBI distributes FORMATDB, a
program which reads FASTA formatted input files
and converts them to a set of binary files that can
be read by BLAST. Readseq, available from the
Indiana University Molecular Biology Software
Archive (Table 4.1) is a handy tool that can
inter-convert among a variety of nucleic acid and
protein sequence formats. There are several web
servers that run Readseq remotely. Many simple
sequence analysis utilities that do such things as
format conversion, plus also a number of more
sophisticated tools, have been incorporated into
the excellent open source EMBOSS package (Rice
et al., 2000).

If a tool cannot be found for post-processing,
or format conversion, an enormous amount of
manual time can be wasted on the task. A
better solution is to write a program using a
scripting language such as Perl, which has very rich
text-processing capabilities (including the ability
to formulate very general regular expressions,
described below). It takes only rudimentary skill
in this language to write a program that can
perform sophisticated text manipulations. The
small investment of effort required to write a script
is quickly repaid the next time the same problem
is encountered, so Perl, or something like it, is
well worth learning. Perl has the advantage that
it is in widespread use by bioinformaticians, giving
rise to open-source projects such as bioperlb whereQA1

many common biologically relevant tasks have
already been coded as Perl modules, or add-ons.
As more people use and contribute to this project,
the toolsets becomes richer and more versatile.
Basic Perl tutorials aimed at novice-programming
biologists are included in some general bioin-
formatics texts (e.g. the bioinformatics textbooks
by Baxevanis and Ouellette, and by Gibas and
Jambeck, see bibliography).

PISE (Letondal, 2001) is a software tool that can
be used to increase the user friendliness of the many
bioinformatics software tools that presuppose a
certain level of familiarity with command windows
and text processing. PISE provides an intuitive
web interface for input to and output from any
standard text-driven software programs, has the
flexibility to handle messy format conversions
behind-the-scenes and puts the program parameter
options directly in front of the user. It includes
an interface to PHYLIP, and EMBOSS programs.
The capabilities of PISE are on display at the
Institut Pasteur Bioweb (Table 4.2).

A TOUR OF SOME ONLINE DATABASES

Literature

Due to the proliferation of the scientific literature,
citation and abstract databases have become
indispensable to the scientific enterprise. PubMed,
the NCBI literature database for molecular biology
and biomedicine, has, at the time of writing,
records for over 27 000 journals. Citation and
abstract databases represent an under-utilised
resource for data-mining (Iliopoulos et al., 2001).
Tools such as Pubcrawler (Hokamp and Wolfe,
1999) and Biomail (Mozzherin, Herrera, and
Miller, unpublished) will perform predefined
searches on the PubMed database at regular
intervals and mail the resulting citation URLs
to the user. Pubcrawler will also perform regular
searches of Genbank (see below), so you know
when any new genes from your favourite organism,
or pathway, are submitted.

DNA Sequence

The premier DNA sequence databases are main-
tained by the members of the International
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Nucleotide Sequence Database Collaboration
(INSDC), which includes the DNA Data Bank
of Japan (DDBJ), the European Molecular
Biology Laboratory (EMBL) Nucleotide Sequence
Database and Genbank, operated by the United
States NCBI. The three databases use somewhat
different formats, but are identical in content; sub-
missions to any one of the members are recorded
in all three databases. Each sequence record
contains information concerning the submission,
the source of the sequence, and varying degrees of
feature annotation. Several specialised categories
of DNA sequence, including Genome Survey
Sequence, High-Throughput Genomic, Expressed
Sequence Tag and others, are now recognised. In
addition to the sequence data itself, these sites
offer many analysis tools, including sophisticated
similarity searches. They also provide a network
of links between related records in different
databases (such as literature, protein, etc.). DNA
polymorphism data are growing in quantity
and importance. Currently, the most extensive
compiled dataset is for Arabidopsis, and can be
accessed through dbSNP at NCBI. A curated
set of organelle genome maps and sequences,
with extensive annotation, are available through
GOBASE at the University of Montreal. There
exist a variety of other niche sequence databases
that are curated by specialists in particular areas,
such as AtRepBase for repetitive sequences in
Arabidopsis, and PLANTncRNAs for expressed,
non-protein coding RNAs in plants. The Plant-
GDB database offers annotated species-specific
EST databases for plants from mosses to an-
giosperms and also hosts sophisticated compara-
tive sequence analysis tools for gene identification
and characterisation.

Protein Sequence

Primary amino acid sequences, mostly derived
from translations of presumptive coding se-
quences, are available through the member
databases of the INSDC. These data repositories
tend to have many errors, a good deal of redun-
dancy, and little functional annotation. To improve
upon these resources, more intensively curated
collections are provided by Protein Information
Resource (PIR) and SWISS-PROT (Bairoch and
Apweiler, 2000). SWISS-PROT includes compre-

hensive links to other databases and should be one
of the first places to look when dealing with protein
sequences.

There are a variety of databases that capture
information about protein sequence features that
are conserved across multiple proteins, and thus
likely to be of functional significance. These
include such loosely defined terms as protein
motifs and domains, and can be generally referred
to as protein signatures. The BLOCKS (Henikoff
et al., 1999), PROSITE (Falquet et al., 2002),
Pfam (Bateman et al., 2002) and ProDom (Corpet
et al., 2000) databases use different but related
technologies to generate and search collections
of protein motifs, domains, or conserved regions
of a multiple alignment among members of a
protein family. PRINTS (Attwood et al., 2002) and
SMART (Letunic et al., 2002) can also identify
protein families by fingerprints, or combinations
of different motifs. InterPro (Apweiler et al., 2001)
provides a single interface for text or sequence-
based searching of most of the major protein
signature databases.

Protein Structure

The primary database for experimentally (and
some theoretically) determined 3D structures
is the Protein DataBank or PDB (Berman
et al., 2000). The data come primarily from X-ray
crystallography and NMR spectroscopy. Though
it has a focus on proteins, PDB also contains
information about the structures of nucleic acids,
carbohydrates, and other biomolecules. Another
important resource for structural biology is the
Molecular Modeling DataBase (MMDB) at NCBI
(Wang et al., 2002). MMDB builds upon the
data in PDB by trying to reconcile apparent
discrepancies between the sequence and structure
and allowing a deterministic reconstruction of
the chemical bonds in the molecule from the
coordinate data. Through the Entrez system,
NCBI also provides links between MMDB and
its putative structural neighbours in the protein
sequence database. These are identified using an
all-by-all search with the VAST algorithm (Gibrat
et al., 1996). A number of databases, such as CATH
(Pearl et al., 2000) and SCOP (Murzin et al.,
1995), provide classifications of protein structures
or substructures, and many of these also provide
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access to software tools for viewing and comparing
structures.

Genome Maps

Genome maps can be classified as marker maps
or trait maps. A marker map is a model of
the arrangement among physical features of the
genome. The distances between features may be
represented in base pairs, or centiRays (physical
map units of a radiation hybrid map), or centi-
Morgans (recombinational map units), or some
other measure. Trait maps, which represent the
contribution made by different genomic regions
to phenotypic variation, are not yet routinely
integrated into genomic databases, although some
effort has been made within certain organism-
specific databases such as MaizeDB. Marker
maps are also best explored at organism-specific
databases, although Plant Genomes Central at
NCBI now provides a view of the genetic and/or
physical map data for a small number of well-
studied plants. One of the more important tasks of
a genome map database is to cross-link different
maps of the same genome. TAIR, for example, has
an excellent interface that allows one to browse
the Arabidopsis genome while keeping track of the
position in multiple maps (including the assembled
sequence, a tiling path of large-insert clones, two
genetic linkage maps of molecular markers and a
genetic linkage map of visible mutations).

Gene Expression

A large number of high-throughput gene expres-
sion studies have been and are being carried out
in plants using a variety of competing technologies.
Collectively, these data are a treasure trove for
comparative studies of gene function. Unfortu-
nately, there is currently no universal site from
which to access results of these studies. In part,
this is due to uncertainty concerning the best
way to organise and disseminate microarray data
electronically. Only the results from a small number
of Arabidopsis experiments are currently available
in NCBI’s Gene Expression Omnibus (Edgar et al.,
2002) and in the Stanford Microarray Database
(Sherlock et al., 2001). Many efforts are under way
to remedy the lack of standards and the paucity of

centralised repositories for microarray data, such
as the MIAME project discussed above.

Other Databases

In addition, many specialty resources have been
developed that do not fit into the above categories.
There are a number of databases that attempt
to curate particular functional groups of genes
or sequence elements. PLACE (Higo et al.,
1999) and PlantCARE (Lescot et al., 2002) both
specialise in plant cis-acting regulatory elements,
while TRANSFAC (Wingender et al., 2000)
covers both trancription factors and binding sites
in all eukaryotes. The Database of Interacting
Proteins (Xenarios et al., 2002), which contains
a limited number of plant records, keeps track of
experimentally determined protein–protein inter-
actions. GeneNet (Kolpakov et al., 1998) provides
information on a small number of select gene
networks with tools for visualisation and dynamic
simulation; some important plant processes are
included. The widely used Enzyme Commission
system of nomenclature is available through the
ExPASy (Expert Protein Analysis System) server
of the Swiss Institute of Bioinformatics. Klotho
collects and categorises information on many
biological compounds. Stock centre databases
can be incredibly valuable resources, as well.
For instance, collections of transposon insertion
mutant flanking sequences, a key tool in reverse
genetics, can be searched for matches to a gene of
interest. A number of such databases have been
established for Arabidopsis, such as FLAGdb and
the Salk Institute Arabidopsis Gene Mapping Tool.
Some of these provide a useful service that will
automatically notify the user of new submissions
matching a specified gene.

ANALYSIS TOOLS

Bioinformatics is a discipline that, by its nature,
has more occasional users than specialists.
Occasional users are typically not too familiar
with the algorithms and statistics underlying
the analytical tools they use (any more than
most biologists understand the workings of
their thermocyclers). While knowledge of these
details can be immensely helpful, it is unrealistic
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to assume that every bench scientist who may
want to perform an alignment, or construct a
phylogenetic tree, would first engage in a thorough
study of the literature. So, for the impatient
bench scientist, we provide here a condensed
introduction to some of the most commonly used
(and misused) tools in sequence analysis.

As a general rule, most parameters for the
algorithms implemented in bioinformatics appli-
cations have default settings in the program (i.e.
the value that is used unless the user specifies
otherwise). However, there is rarely, if ever, an
a priori best value for a particular parameter; they
are almost invariably dataset dependent. Thus,
while it is possible to obtain a multiple sequence
alignment by simply feeding your sequences into
an alignment program, there is no guarantee that
the resulting alignment is the best (i.e. closest to the
true alignment) that computational methods can
offer. It is wise to both experiment with program
parameters, and to apply biological judgement
in deciding upon the optimal parameters for a
particular dataset.

Another useful thing to remember is that, if
you are faced with a biological question requiring
some computational application, the chances are
that someone before you has been in the same
spot. Rather than spend valuable time reinventing
the wheel (although doubtless a great learning
experience), a web search will often be fruitful, and
may even leave you with a choice of programs. New
programs are arriving on the web all the time. In the
case of most standard sequence analysis methods,
the programs one is likely to need are already freely
available on the Web and do not require the user to
instal any software. This is particularly important
for the bench scientist who may not be using
these tools frequently enough to justify investment
in a commercial software package. For example,
there are many websites with free primer design
software (e.g. Primer 3, Table 4.1). To verify that
the software is of high quality, one should examine
the associated publication and determine whether
it is being used by reputable research groups. Sev-
eral bioinformatics research institutions provide
well-maintained interfaces to the most commonly
used (and generally respected) tools. Some of these
jump stations are listed in Table 4.2 and are useful
starting points when looking for a new tool.

Some of the most commonly asked questions
in bioinformatics are essentially evolutionary in

nature. One dogma of bioinformatics is that closely
related protein sequences should have similar
structures, and thus have similar functions. There
are vast amounts of sequence data available and
very less data on protein structure and function.
Therefore, identification of similar sequences can
be one of the quickest routes to understanding
the function of a protein. This is accomplished
by pairwise local alignment between a single
query sequence and a large sequence database
(e.g. SWISS-PROT/TrEMBL). Multiple sequence
alignment and phylogenetic tree construction can
throw additional light on conserved DNA or
amino acid sequence signatures and on the pattern
of functional divergence in the gene family. We
describe each of these analyses below. In addition,
we briefly mention some of the tools available for
protein structural analysis and gene expression
data, as these are increasingly vital areas of
genome informatics. Areas of sequence analysis of
relevance to genomics that we do not cover include
sequence assembly, gene prediction and sequence
annotation. Space limitations also require us to
neglect the considerable computational issues in
genetic and physical mapping.

Homology Detection

Homologous sequences are related by descent from
a common ancestor. Highly similar sequences are
often, but not always, homologous: and homo-
logues are often, but not always, highly similar
(Bork et al., 1992). Thus, sequence similarity
is an indirect indicator of homology, which is
itself an indirect indicator of shared functionality.
There are no degrees of homology; sequences are
either related by descent, or they are not (Reeck
et al., 1987; Fitch, 2000). In contrast, simi-
larity comes in shades of grey, as two sequences
may have diverged to a greater or lesser extent from
their common ancestor. It would thus be correct to
say that two proteins are x% identical at the amino
acid level, though incorrect to say that they are x%
homologous.

The Smith–Waterman Algorithm

The best mathematical solution to the not
inconsiderable problem of identifying the most
similar sequence in a database of over 14 million



KC012 WL052A June 16, 2003 15:25 Char Count= 0

12 HANDBOOK OF PLANT BIOTECHNOLOGY

Fig. 4.1 The Smith–Waterman algorithm for pairwise local
alignment. Matches are scored +1, mismatches –0.3 and
gaps –(1 + 0.3k), where k is the length of the gap. (a) Each
sequence is represented along a side of a matrix. The values
of the matrix indicate the similarity score for the residues.
(b) The alignment scores are calculated for each position in
the table, as described in the text. In the case of the element
marked with a question mark ‘?’, the score resulting from
adding this aligned pair (C aligned with C in this case) to an
alignment ending at any of the pairs shaded grey is calculated
by adding the score of this pair to the existing alignment,
and deducting a gap penalty where required. The highest
score is retained, or the score is zero (whichever is higher).
(c) The highest value in the completed table marks the right-
hand terminus of the highest-scoring alignment. The alignment
itself is obtained by tracing back from this position to the first
position encountered that has a value of zero (shaded elements).
(d) The resulting alignment

sequences (e.g. Genbank) is the Smith–Waterman
algorithm (1981), illustrated in Figure 4.1. This
algorithm (and its fast approximate derivatives
BLAST and Fasta) can be used to compare a
query sequence to each sequence in a database,
constructing an optimal pairwise alignment for
each one and generating a score that can be used to
rank the alignments. The total score for a pairwise
alignment is simply the sum of the individual scores
for each position in the alignment. The individual
scores are positive whenever two identical or

similar residues are aligned and negative when the
residues are dissimilar or when a gap is introduced
or extended. We discuss below how these individual
scores are derived.

The Smith–Waterman algorithm differs from
its predecessor, the Needleman–Wunsch algorithm
(1970), in that, instead of aligning two sequences in
their entirety (i.e. a global alignment), it efficiently
compares segments of all possible lengths and
chooses the local alignment that optimises the sim-
ilarity score. Local alignment is more appropriate
for database searches because conservation be-
tween long-diverged homologues is often restricted
to specific regions (such as key structural domains)
and a reliable global alignment would require at
least some conservation throughout.

The fundamental principle of the Smith–
Waterman algorithm is that, to calculate the
alignment score, S(i , j), (where i and j are the
endpoints of the alignment in sequence 1 and 2,
respectively) one need only enumerate and score
the limited set of possible ways of generating this
alignment by extending a subalignment.

The basis for the algorithm is a recursion
equation, applied for all possible i and j, than
can be described in words as follows. There are
four possible ways of extending a subalignment:
(i) align the next residue of sequence 1 with the
next residue of sequence 2 and increase the score by
the similarity score for that pair of residues
(score(ai, bj)), (ii) align the next residue of seque-
nce 1 with a gap (i.e. a deletion sequence 2) and
deduct a gap penalty proportional to the length
of the gap (Wk for gap of length k), (iii) insert
a gap into sequence 1 and deduct a gap penalty
as above or (iv) stop the alignment (and set the
score to zero). The method is initialised with a
null alignment, proceeds by accepting the highest
scoring of the four options at every point and uses
the resultant scores to fill in a table such as that in
Figure 4.1. The optimal local alignment is the path
through this diagram that leads to the cell having
the highest score. Gaps are inserted at points where
the path moves vertically or horizontally.

Local Alignment Statistics

After a database search, one wishes to obtain those
sequences (and alignments) in descending order
of score (normalised to correct for differences in
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sequence length). A key breakthrough of recent
years is the widespread use of rigorous statistics
for pairwise alignment. The expectation value
(E-value) is the number of alignments of the
same or higher score that would be expected in
a database search of random sequences (Altschul
and Gish, 1996). As E-values approach zero they
approximate P-values (i.e. the probability that the
observed similarity would be observed in a random
search). E-statistics are reported by the major
database search algorithms, including MPsrch
(a Smith–Waterman implementation described
below), BLAST and Fasta. It is important to
recognise that the ranking of alignments by
E-value may well differ from the ranking according
to time since divergence or per cent identity (Koski
and Golding, 2001). Furthermore, although these
statistics allow one to judge the most similar se-
quences in a given database according to a defined
scoring function, it requires human judgement to
interpret the biological meaning of the alignments
and rankings. For example, it may be the case that
even the most similar sequence in a given database
is not a homologue of the query sequence.

Protein Substitution Matrices

The highest scoring alignment will depend on
the method of scoring residue matches and
mismatches. The simplest method is to assign a
score of +1 to a match, and −1 or 0 to a mismatch.
However, when dealing with protein sequences, this
is overly naive. For example, replacing a leucine
with isoleucine might not have a major effect on
the function of the protein, whereas replacing that
same leucine with the biochemically and physically
dissimilar phenylalanine may have a considerable
effect. Therefore, we would like to penalise a
mismatch between a leucine and a phenylalanine
more heavily than a mismatch between a leucine
and an isoleucine.

These biological properties are (indirectly) taken
into account by the PAM (Point Accepted Muta-
tion; Dayhoff et al., 1978) and BLOSUM (BLOcks
SUbsitution Matrix; Henikoff and Henikoff, 1992)
scoring matrices. These matrices are actually
based on the observed patterns of substitutions
in carefully curated sets of sequence alignments.
Positive scores in these scoring matrices indicate
common replacements, whereas negative numbers

indicate uncommon replacements. There is a good
correspondence between observed rates of substi-
tution between particular amino acid pairs and
those expected based upon their physicochemical
similarities.

The numbering system of the matrices refers
to the evolutionary distance for which they are
calibrated. For example, the PAM 250 matrix
(Table 4.3) is optimised for sequences with an
average of 250 substitutions per 100 amino
acids. The BLOSUM 62 matrix is optimised for
sequences with approximately 62% identity. (Note
the difference in the meaning of the numbers
for the two families of matrices.) Because of the
calibration, the default scoring matrix used by a
particular piece of software may be inappropriate
for many sequence comparisons. In particular, if
one is trying to detect highly similar, or highly
diverged sequences, then it would be wise to pick
a substitution matrix accordingly. Unfortunately,
since there is no universal ‘molecular clock’
(Zuckerkandl and Pauling, 1965; Li, 1993),
different matrices will be appropriate for different
genes and proteins.

Programs for Database Search Using Local
Pairwise Alignment

While most similarity search programs are avail-
able in standalone versions that can be run
on a local computer, there are advantages to
implementing a search online. Most importantly,
there is no need to download any database. EBI and
NCBI, plus many mirror sites, have local up-to-
date versions of the centralised DNA and protein
databases that can be searched from their websites.
However, if a custom database of sequence data is
to be searched, a local installation will be necessary.
NCBI currently implements a queuing system in
which multiple searches from the same network
domain are given low priority. Since it generally
the case that all computers at a particular research
site are in the same domain, it is advisable to instal
NCBI’s BLAST locally when conducting a large
number of searches.

MPsrch

Until recently the only software implementations
of the Smith–Waterman algorithm were very
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Table 4.3 A PAM 250 scoring matrix for amino acid substitutions. The row and column headings are the IUPAC single-letter codes
for each residue. The matrix is symmetric. Each number is the logarithm of the ratio of (i) the probability of substitution between
the row and column residues based on empirical data relative to (ii) the same probability derived from amino acid frequencies alone.
Thus, the more positive the numbers, the higher the probability of that particular substitution. Numbers along the diagonal are related
to the probability that the residue is identical after 250 PAM units (250 substitutions per 100 amino acids)—note that this does not
require that the site has not undergone any substitution events

A R N D C Q E G H I L K M F P S T W Y V B Z X ∗

A 2 −2 0 0 −2 0 0 1 −1 −1 −2 −1 −1 −3 1 1 1 −6 −3 0 0 0 0 −8
R −2 6 0 −1 −4 1 −1 −3 2 −2 −3 3 0 −4 0 0 −1 2 −4 −2 −1 0 −1 −8
N 0 0 2 2 −4 1 1 0 2 −2 −3 1 −2 −3 0 1 0 −4 −2 −2 2 1 0 −8
D 0 −1 2 4 −5 2 3 1 1 −2 −4 0 −3 −6 −1 0 0 −7 −4 −2 3 3 −1 −8
C −2 −4 −4 −5 12 −5 −5 −3 −3 −2 −6 −5 −5 −4 −3 0 −2 −8 0 −2 −4 −5 −3 −8
Q 0 1 1 2 −5 4 2 −1 3 −2 −2 1 −1 −5 0 −1 −1 −5 −4 −2 1 3 −1 −8
E 0 −1 1 3 −5 2 4 0 1 −2 −3 0 −2 −5 −1 0 0 −7 −4 −2 3 3 −1 −8
G 1 −3 0 1 −3 −1 0 5 −2 −3 −4 −2 −3 −5 0 1 0 −7 −5 −1 0 0 −1 −8
H −1 2 2 1 −3 3 1 −2 6 −2 −2 0 −2 −2 0 −1 −1 −3 0 −2 1 2 −1 −8
I −1 −2 −2 −2 −2 −2 −2 −3 −2 5 2 −2 2 1 −2 −1 0 −5 −1 4 −2 −2 −1 −8
L −2 −3 −3 −4 −6 −2 −3 −4 −2 2 6 −3 4 2 −3 −3 −2 −2 −1 2 −3 −3 −1 −8
K −1 3 1 0 −5 1 0 −2 0 −2 −3 5 0 −5 −1 0 0 −3 −4 −2 1 0 −1 −8
M −1 0 −2 −3 −5 −1 −2 −3 −2 2 4 0 6 0 −2 −2 −1 −4 −2 2 −2 −2 −1 −8
F −3 −4 −3 −6 −4 −5 −5 −5 −2 1 2 −5 0 9 −5 −3 −3 0 7 −1 −4 −5 −2 −8
P 1 0 0 −1 −3 0 −1 0 0 −2 −3 −1 −2 −5 6 1 0 −6 −5 −1 −1 0 −1 −8
S 1 0 1 0 0 −1 0 1 −1 −1 −3 0 −2 −3 1 2 1 −2 −3 −1 0 0 0 −8
T 1 −1 0 0 −2 −1 0 0 −1 0 −2 0 −1 −3 0 1 3 −5 −3 0 0 −1 0 −8
W −6 2 −4 −7 −8 −5 −7 −7 −3 −5 −2 −3 −4 0 −6 −2 −5 17 0 −6 −5 −6 −4 −8
Y −3 −4 −2 −4 0 −4 −4 −5 0 −1 −1 −4 −2 7 −5 −3 −3 0 10 −2 −3 −4 −2 −8
V 0 −2 −2 −2 −2 −2 −2 −1 −2 4 2 −2 2 −1 −1 −1 0 −6 −2 4 −2 −2 −1 −8
B 0 −1 2 3 −4 1 3 0 1 −2 −3 1 −2 −4 −1 0 0 −5 −3 −2 3 2 −1 −8
Z 0 0 1 3 −5 3 3 0 2 −2 −3 0 −2 −5 0 0 −1 −6 −4 −2 2 3 −1 −8
X 0 −1 0 −1 −3 −1 −1 −1 −1 −1 −1 −1 −1 −2 −1 0 0 −4 −2 −1 −1 −1 −1 −8
∗ −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 −8 1

time consuming and, as a result, were feasible
only on very powerful computers searching small
databases. However, recently there have been
advances both in the speed of the average computer
and in the implementation of the algorithm. The
fastest running implementation of the true Smith–
Waterman algorithm is MPsrch. Though about
10 times slower than the BLAST algorithm (descr-
ibed below), it is acceptable for smaller databases.
The software is available free to academic
users from the Edinburgh Biocomputing Systems
website (www.edinburgh-biocomputing.com/) for
local use on a UNIX/Linux operating system.
MPsrch is also available online at the EBI website
(see Table 4.2).

Unlike other similarity search programs (such
as BLAST), MPsrch is currently only available
for querying protein sequences against a protein
database. If you have a DNA sequence, you must
perform the translation yourself (which may be
done using the transeq program on the EBI
website). Thus, in the case where you do not know

the reading frame of the encoded protein, it is
necessary to translate in all six possible reading
frames, run MPsrch six times independently, and
manually combine the output.

BLAST

The most commonly used similarity search
method is the Basic Local Alignment Search
Tool (BLAST; Altschul et al., 1997). BLAST is
a heuristic modification of the Smith–Waterman
(1981) algorithm (i.e. it is not guaranteed to
produce an optimal pairwise alignment and score);
in practice, however, it performs very well. More
importantly, it is orders of magnitude faster
than any true Smith–Waterman implementation.
The most popular online interface to BLAST is
available at NCBI, where a standalone version is
also available for download.

There are several parameters controlling the
behaviour of the BLAST algorithm, and these



KC012 WL052A June 16, 2003 15:25 Char Count= 0

COMPUTATIONAL TOOLS AND RESOURCES IN PLANT GENOME INFORMATICS 15

need to be carefully considered. Apart from
selecting the appropriate program to suit the data
(described below), the user should also exploreQA2
different substitution matrices and gap penalties.
In these days of burgeoning databases, the problem
is not to identify a database hit, but more to limit
these hits to a manageable number. To this end,
NCBI BLAST allows the user to limit the results
by taxonomic groups.

BLAST includes a low complexity filter,
called SEG for protein sequences (Wootton and
Federhen, 1996) and DUST for nucleotide se-
quences, that excludes some repetitive or simple
portions of the query sequence from consideration.
In the output, the appropriate letter code for these
residues will be replaced with an ‘X’. Filtering
may be important if the query protein sequence
contains, for example, a proline-rich domain. If
this domain is included in the query then BLAST
may just return any other proline-rich proteins. To
avoid such artefacts, it is generally advisable to turn
this filter on. Similarly, to force BLAST to ignore
a particular part of a query sequence, manually
replace it with ‘X’s. NCBI BLAST also allows one
to do this by writing the residues to be masked in
lower case and selecting the appropriate filter.

BLAST includes several parameters controlling
the opening and extension of gaps into the
alignment. The user should investigate the conse-
quences of changing these parameter settings since
the optimal settings cannot be known beforehand
and are very unlikely to correspond to the defaults.
The gap and extension parameters have an even
greater effect on the quality of multiple sequence
alignments, and are discussed more thoroughly in
that section (see below).QA2

The standard BLAST algorithm has been
implemented for nucleotide–nucleotide similarity
searches (i.e. comparison of a nucleotide query
to a nucleotide database without translation—
BLASTN), protein–protein searches (BLASTP),
protein–nucleotide comparisons with the query
conceptually translated in all six reading frames
(BLASTX), nucleotide–protein comparisons with
each database sequence conceptually translated
in all six reading frames (TBLASTN), and
nucleotide–nucleotide comparisons conducted at
the protein level, with both query and database
translated in all six reading frames (TBLASTX).
Obviously, the searches requiring translation of
nucleotide sequences are multiplying the work and
so take longer than a standard protein–protein

search. However, BLAST produces much more
reliable alignments (and thus has greater sensitivity
to detect homologues) when protein sequences
(known, or conceptually translated) rather than
DNA sequences are used.

Fasta

Fasta (Fast Alignment; Pearson, 2000) was the first
widely used heuristic algorithm for very rapid local
sequence alignment against a database. It works
somewhat differently than BLAST, although this
is not apparent to the user, and the results of the
two programs often coincide quite closely. Fasta
can be freely downloaded as a standalone program
and is also available online at EBI. Pearson (2000)
provides a useful comparison of the programs
mentioned here along with practical guidelines on
how to implement sequence similarity searches and
interpret the results. Fasta also lends its name to a
sequence format that is readable by many different
software packages. A Fasta formatted sequence
has a definition line that begins with a ‘>’ character
followed by one or more lines of raw sequence. No
sequence should be included on the definition line
because it will be ignored. A Fasta file may have
multiple sequences as long as each is preceded by
its own definition line. BLAST expects both the
query sequence(s) and the unprocessed sequence
database file(s) to be stored in Fasta format, or in
the ASN.1 format (they should be processed using
FORMATDB of the standalone BLAST package).

Motif Search

In these days of abundant sequence data, the
majority of proteins have multiple homologues in
the public databases; thus, the programs discussed
above will usually return many related sequences.
Still, it is often necessary to use more sensitive
methods in order to locate homologues for which
there are experimentally determined structural or
functional data.

Position Specific Iterated (PSI)-BLAST

PSI-BLAST is an implementation of a profile
search methodology that facilitates the retrieval
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of distant homologues of a protein (Altschul
and Koonin, 1998). It is currently only available
for protein searches. It is easy to use, but it is
also important to pay attention to the parameter
settings and not blithely accept the defaults.
PSI-BLAST works iteratively. It first conducts
a regular protein–protein BLAST search using
one of the standard substitution matrices applied
equally to all positions. A multiple alignment is
constructed from the set of sequences obtained and
a position-specific substitution matrix (PSSM) is
calculated. Using this PSSM, which is often called
a profile, the database is searched again for more
distant homologues. After several iterations, the
process should converge (i.e. no more significant
hits are discovered). The accidental inclusion of
non-homologous sequences can have disastrous
consequences for the rate of convergence and
the reliability of the results. For this reason,
between each iteration, the user is required to
select which new sequences to include in the
updated PSSM. These searches are typically much
more sensitive than a standard BLAST search,
which uses the same substitution penalties for
each site. The PSSM, by contrast, is calculated
from the frequencies of residues observed at each
site in the alignment. Other motif-related variants
of BLAST at NCBI include RPS-BLAST, which
searches a database of PSSMs for domain matches
to a query sequence and PHI-BLAST, which
combines matching of a regular expression (see
below) with a local alignment search for a queryQA2
sequence.

Regular expressions are a flexible way to specify
sequence motifs and other linear text patterns.
The notation for regular expressions varies, but
a simple convention for protein sequence motifs
is to use square brackets indicating that a pattern
may contain any of the enclosed amino acids, and
curly brackets indicating that the pattern may have
any residue except those enclosed at that position.
For example, EL[GV]I{AN} would match ELVIS,
but not ELGIN. Wildcards, repeats and variable
spacing between residues can also be included in
regular expressions.

Hidden Markov models (HMM) can also be
used to describe protein sequence motifs (Eddy,
1998). Similar to a PSSM, but unlike a regular
expression, the residues at each site may have
varying probabilities of occurrence. Similar to a
PSSM, the residues before and after the position

in question will generally alter that probability,
as would often be the case biologically. Another
advantage of profile HMMs is that they allow for
variable spacing between the residues of a motif.
The HMMer program (Table 4.1) can be used to
derive a profile HMM from a multiple sequence
alignment (see below).

Multiple Sequence Alignment

Once a family of homologous sequences is in
hand, the next step is typically to construct
a multiple sequence alignment (MSA). MSA
identifies equivalent positions in homologous
sequences and is a powerful way to identify
conserved (and thus likely functionally important)
motifs in sequences. MSA is also a prerequisite to
phylogenetic tree construction.

MSA is a far more difficult computational prob-
lem than pairwise alignment. Though methods for
optimal MSA have been developed, they are too
slow and memory intensive to be used on real
data and do not allow for biologically realistic
models of sequence evolution. Thus, all of the
MSA algorithms used in practice are heuristic
(none can guarantee an optimal alignment in the
sense that the Smith–Waterman algorithm can).
In addition, although local MSA algorithms exist,
the most commonly used methods perform global
alignments. This is often desirable and possible,
since sets of closely related sequences are typically
being compared. But, as a consequence, many
MSA algorithms perform very poorly (i.e. return
nonsense) when given distantly related sequences
(especially in the so-called twilight zone of sequence
identity below approximately 25%) and those of
differing lengths.

The most commonly used heuristic for MSA
is called progressive alignment. The first step in
progressive alignment is to use distances obtained
from pairwise Needleman–Wunsch alignments to
construct a (very approximate) phylogeny known
as a guide tree. The algorithm continues to
completion by performing pairwise alignments
between individual sequences or sets of aligned
sequences—starting with the most closely related
pairs and working down to the interior branches
of the tree (Feng and Doolittle, 1987; Taylor, 1988;
Thompson et al., 1994). Note that the guide tree
generated by this part of the algorithm should not
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be taken to be an estimate of the true phylogeny,
it is merely a tool to facilitate sequence alignment
(phylogenetic tree construction is discussed below).
The most widely used implementation of a
pure progressive alignment approach is ClustalW
(Thompson et al., 1994).

Progressive alignment works fairly well and,
of equal importance, it is relatively rapid. One
flaw, however, is that mistakes made in the early
stages of alignment cannot be rectified later
after new sequences are added. By contrast,
iterative alignment starts with a best-guess of
the full MSA and then iteratively optimises it.
Some implementations of iterative alignment (e.g.
PPRP, Gotoh, 1996) perform well, in that they
generally find alignments at or close to the
optimum, but convergence tends to be very slow.
T-Coffee (Notredame et al., 2000), a relatively
recent method for MSA, incorporates features
of both progressive and iterative alignment.
T-Coffee appears to perform at least as well as
(and often better than) the major progressive and
iterative software packages in a variety of different
situations.

The chief parameters to consider for MSA
are the scoring matrix used and the gap penalty
settings. The scoring matrix has already been
discussed. The most common way to parameterise
the gap penalties is to specify a gap opening penalty
and a gap extension penalty. The gap opening
penalty is the basic cost of any gap (in terms of
a deduction from the alignment score) and the gap
extension penalty is multiplied by the length of the
gap. By adjusting these two parameters, one can
steer the alignment towards many small gaps, a few
large ones or somewhere in between. Normally, the
gap extension penalty is a value much lower than
the gap opening penalty.

While default values provide a useful starting
point, one needs to carefully explore the sensitivity
of the results to changes in these values. Figure 4.2
shows the differences between alignments for a set
of Arabidopsis IAA proteins obtained with two
software packages.

Phylogenetic Tree Construction

A phylogenetic tree is a model of evolutionary
divergence events. These trees contain two types

of information. The tree topology illustrates the
order of divergence events and the branch lengths
indicate the extent of sequence divergence (which is
sometimes, but not always, proportional to time).
Phylogenetic trees may be constructed using any
type of biological data, but molecular sequence
data have the advantage of being abundant, easily
scored and compared, and undergo evolutionary
change according to extensively studied and
modelled processes. In genomics, it is often the
case that what is of interest is the phylogeny of the
sequences themselves, rather than the phylogeny
of the organisms. Nonetheless, it is important to
recognise that even if phylogenetic trees could
always be inferred with perfect accuracy (which
is not the case), the phylogenetic trees for genes
sampled from a given set of taxa may vary from
one gene to the next. This may be due to horizontal
transfer, or, for closely related taxa, to the variable
nature of gene genealogies in populations. In
addition to inferring the order and timing of
divergence events among sequences, molecular
phylogenetic trees can provide a framework
for asking a wide variety of evolutionary and
functional questions about the sequences and the
organisms that host them.

One can distinguish different kinds of ho-
mologues using molecular phylogenetics (Fitch,
1970). Orthologues are a subset of homologues
where sequence divergence has occurred after a
speciation event (i.e. the most recent common
ancestor of the two sequences corresponds to the
most recent common ancestor of the two species
from which the sequences were obtained). With
the few exceptions mentioned above, one can make
the generalisation that the true phylogeny of a set
of orthologues is the same as the true phylogeny
of the taxa in which they are found. Paralogues,
on the other hand, are homologues that have
diverged after a gene duplication event and may
co-exist in the same genome. While duplicated
genes may be paralogues of each other, they
can still both be orthologues (sometimes called
semi-orthologues, or co-orthologues; Sharman,
1999; Taylor et al., 2001) of the corresponding
gene in those lineages that diverged prior to
the gene duplication event. It is generally more
problematic to assume that paralogous genes (i.e.
different lineages of a gene family) have conserved
functions than it is for orthologous genes. Knowing
orthology and paralogy within a gene family can
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Fig. 4.2 Alignments generated using two different software programs (with default settings) for a set of indole acetic acid responsive
proteins from Arabidopsis thaliana (IAA1: gi12644289; IAA5: gi1168608; IAA6: gi12484195; IAA19: gi17365900). (a) ClustalW,
(b) T-Coffee. Apparent conserved residues are shaded grey. The most obvious difference between these two alignments is that
T-Coffee appears to have much more reliable alignments in and around gaps (e.g. the residues shaded in black)

thus aid predictions of functional conservation.
While alignment can be used to find homologues,
only phylogenetics can distinguish orthologues
from paralogues.

There are numerous methods for phylogenetic
tree estimation. The most commonly used are
neighbour-joining, maximum parsimony and max-
imum likelihood. We will describe these, as well
as some more recent methods, although our
treatment will necessarily be brief. The usual
starting point for molecular phylogenetic inference
is a multiple sequence alignment.

Some methods (e.g. neighbour-joining) use only
the pairwise distance estimates obtained from the
MSA, while others (maximum parsimony, maxi-
mum likelihood) explicitly model character state
(residue) changes along the branches of the tree.

Neighbour-Joining

Saitou and Nei’s (1987) neighbour-joining (NJ)
algorithm is a heuristic method for obtaining a
tree from a matrix of distance values according to
the criterion of minimum evolution (in which the
goal is the tree with the minimum sum of branch
lengths). NJ is extremely rapid and can handle
very large datasets. In addition, it is guaranteed to
produce the minimum evolution tree if sequences
are evolving in a clock-like fashion. Though NJ
is not guaranteed to find the optimal tree when
that condition does not hold, it is not as sensitive
to branch length variation as other rapid tree-
building methods.

NJ has been implemented by many programs,
including the ClustalW and T-Coffee MSA
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software packages. While the MSA guide tree
(discussed above) is constructed from a provisionalQA2
distance matrix based on pairwise alignments, and
thus is not to be relied upon, the user may also
specify that a (more reliable) tree be drawn using
the distances obtained from the MSA itself.

Maximum Parsimony

The philosophy behind maximum parsimony (MP)
is that the true evolutionary history of a set of
genes can be traced through the path of fewest
sequence residue (or some other heritable trait)
changes. An algorithm referred to as branch-and-
bound is guaranteed to find the optimal tree
according to the MP criterion (Hendy and Penny,
1982), but it cannot be applied to datasets with
larger than 20–30 sequences at present. Thus, one
typically searches for the MP tree (or trees) using
various quick-and-dirty strategies that evaluate
some subset of tree space. A given search may
or may not succeed in finding the maximum
parsimony tree or trees. When one obtains many
equally or similarly parsimonious trees, as is often
the case, it is necessary to compute a consensus
tree that collapses ambiguous branches. For
computational efficiency, MP is generally applied
in an unweighted fashion (i.e. all substitutions are
assumed to occur with equal frequency). However,
this is a problematic assumption for both DNA
and protein sequences and can give very misleading
results. MP is also a questionable criterion for
choosing among alternative topologies because
it does not adequately account for multiple hits.
Because of this, in situations where there are
two or more unrelated long branches in the
true phylogeny, MP will provide ever-increasing
support for a false relationship between those taxa
as the amount of data increases (the so-called long
branch attract phenomenon; Felsenstein, 1978a).
MP is also fairly slow on large datasets, even
when using heuristic search algorithms, because
the number of possible trees grows to astronomical
proportions very quickly as the number of
sequences increases (Felsenstein, 1978b).

Maximum Likelihood

Maximum likelihood (ML) is an explicitly statis-
tical criterion for tree construction (Felsenstein,

1981). The likelihood of a phylogenetic tree is
the probability of observing the sequence data
under a specific model of substitution and for a
given tree topology, assuming both to be correct.
The principle of ML is to find the topology with
the highest likelihood. In order to do this, the
algorithm must investigate the probability of all
possible residues (amino acids, or nucleotides) for
each position in the alignment at each of the
internal nodes of the tree. Some residues will be
more likely than others to give rise to the residues
at the tips of the tree (i.e. the residues in the extant
sequences) and therefore will contribute more to
the likelihood of that topology. Since ML is only
a criterion to choose among trees and does not
provide a quick way to search for the best tree, it
can be very computationally intensive, requiring
examination of many different trees—as with MP.
Recently, fast ML search algorithms have become
available (e.g. Strimmer and von Haeseler, 1996).

Bayesian Methods

Closely related to ML methods are so-called
Bayesian methods (Huelsenbeck et al., 2001).
These are also computationally intensive, but
because of algorithmic differences, can be used
to infer trees for very large datasets (Karol
et al., 2001). Bayesian methods also provide a
natural way to measure statistical support for
particular relationships within the tree. For other
methods, support can only be approximated by
bootstrapping (see below). The results from both
ML and Bayesian methods are dependent on the
quality of the substitution model, which specifies
the probability of change between all character
states and may also allow for such features as
rate variation among sites (see below). Software is
available for comparing the fit of different models
of substitution (Posada and Crandall, 1998).

Rooting Trees

It is necessary to root a phylogenetic tree before
inference can be made about the relative order of
branching events, but identifying the root (i.e. the
branch ancestral to all sequences) can sometimes
be a challenge.
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Quick and dirty methods place the root at the
midpoint of the tree or along the longest internal
branch. In cases where rates of substitution are
non clock-like, these are a poor choice. A preferred
method is to include an outgroup sequence (or
sequences) in the analysis. This should be a related
sequence, or set of them, known to have diverged
before the ingroup sequences under study. The
branch connecting the outgroup(s) to the rest of the
tree can then be taken as the root. The challenge is
to identify a sequence that is sufficiently divergent
to be confident that it really is an outgroup yet
not so divergent that it is difficult to determine its
point of attachment to the tree or that it cannot be
aligned with the other sequences.

Bootstrapping

Quite often there is not enough information in an
alignment to resolve some or all of the relationships
of the sequences under study with confidence.
This may happen if the sequences are all very
similar or if they are sufficiently divergent that
many sites are saturated (have undergone multiple
substitutions along each branch). In other words,
not all positions in an alignment are informative
of the evolutionary relationship of the sequences.
In cases where there are very few informative sites,
there will be low statistical support for the tree.

Bootstrapping (Felsenstein, 1985) is a resampling
technique used to calculate the degree of statistical
support for each branch (Figure 4.3) and is the
de facto standard method for assessing confidence
in trees obtained via NJ, MP and ML. It works by
resampling (with replacement) positions from the
original alignment to construct a new alignment
of the same length as the original. A tree is
then inferred from the resampled alignment.
This is typically done for 500–1000 replicates.
The bootstrap value for a given branch is the
proportion of replicates in which the same set of

Fig. 4.3 The bootstrap procedure to evaluate the statistical support for the branches in a phylogenetic tree topology. (a) The original
alignment and the tree generated from that alignment. (b) For the purposes of bootstrap analysis, all positions in the alignment are
considered to be independent of one another and constitute the sample space for bootstrap sampling. (c) Bootstrap alignments are
generated by randomly sampling, with replacement, k positions from the original alignment of length k. In each bootstrap alignment,
a given site may be sampled more than once while others may not be sampled at all. A phylogenetic tree is constructed from each
individual bootstrap alignment. (d) and (e) Different bootstrap samples and corresponding trees. (f) The original tree with bootstrap
values on each of the branches. The bootstrap value is the proportion of bootstrap trees in which an identical branch was found

taxa descended from that branch. If only very few
sites of the original alignment support a branch,
then it will be rarely seen among the replicates
and will therefore have a low bootstrap value. As a
general rule, a bootstrap value of 80% or higher is
considered strong support for a branch.

It is common practice, when reporting the results
of a phylogenetic analysis, to merge the nodes
on either end of those branches that have low
bootstrap support (Berry and Gascuel, 1996). The
resultant tree will then contain some nodes that are
multifurcating (having three or more descendent
branches), rather than bifurcating (having exactly
two descendent branches).

Special Considerations

Alignment Gaps

Gaps (or indels, short for insertions/deletions)
can be difficult to incorporate into phylogenetic
analysis. If one were willing to assume that a
contiguous gap represents a single mutational
event, it would be appropriate to score it as a single
binary character (present or absent). However,
models that incorporate both substitutions and
gaps are yet to be widely accepted. In addition,
multiple sequence alignments tend to be unreliable
in the neighbourhood of gaps. Thus, it is
recommended to exclude positions with gaps when
inferring a phylogenetic tree from an MSA. Most
phylogenetic software packages provide it as an
option. The common exception to this is in
unweighted MP, where gaps are treated as a fifth
base or an extra amino acid residue.

Multiple Hits

When the time since divergence of two sequences
is short and/or the rate of evolution is slow, then
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the chance of more than one substitution having
occurred at the same site is negligible. But, when
divergence times are longer or rates are faster,
this chance increases and must be taken into con-
sideration when calculating evolutionary distance.
The observable number of substitutions is almost
always considerably less than the actual number
of substitutions that have taken place. There are
several different methods of correcting for multiple
hits in DNA sequences (Jukes and Cantor, 1969;
Uzzell and Corbin, 1970; Kimura, 1980) and
protein sequences (Dayhoff, 1978; Henikoff and
Henikoff, 1992). One must explicitly perform this
correction when calculating pairwise distances for
a method such as NJ. However, the substitution
matrices used by ML and Bayesian methods
inherently correct for multiple substitutions.

The simplest correction methods are based on
models in which the probability of substitution
is equal over sites. The gamma correction for
multiple hits (Uzzell and Corbin, 1970; Yang, 1996;
Gu and Zhang, 1997) is more realistic in that
it allows for rate variation among sites (as may
happen when sites differ in their degrees of selective
constraint). However, the gamma correction is
not implemented in every tree inference package
and, because the shape parameter for the gamma
distribution must be estimated from the data, it
may not be appropriate for small datasets. An
alternative approach is to model some fraction of
the sites as invariant while allowing the others to
substitute with equal probabilities.

Silent and Replacement Substitutions

Due to the degeneracy of the genetic code,
some fraction of DNA base substitutions within
protein coding regions are silent (or synonymous),
in that they do not lead to an alteration
in the protein sequence, while some lead to
an amino acid replacement (and are therefore
nonsynonymous). For a protein sequence under
no selective constraint, the ratio of silent to
replacement substitutions, normalised by the
number of silent and replacement sites, has an
expectation of one. A change in this ratio along
a protein coding sequence, or among lineages
within a protein family, can be informative about
the forces of functional constraint and selection
acting on the sequence. Sophisticated methods

for sequence analysis have been developed based
upon this simple principle. Many of these can be
implemented in the PAML and HyPHY software
packages (Table 4.1). An example of this type of
analysis for NBS-LRR genes is discussed below.

Phylogenetics Software

PHYLIP

The PHYLogeny Inference Package (Table 4.1)
provides numerous software modules for a wide
variety of phylogenetic methods. PHYLIP in-
cludes: NEIGHBOR, for NJ trees, PROTPARS
and DNAPARS for MP trees (from protein or
DNA alignments, respectively) and PROTML and
DNAML for ML trees. PHYLIP can also be
accessed through a user friendly web interface
hosted by the Institut Pasteur. PHYLIP is widely
used and comes with extensive documentation. In
addition, the author maintains a comprehensive
list of other phylogenetics software at the Phylip
website.

Drawing Trees

The most commonly used way to represent trees
in computer files is the Newick format, in which
nested pairs of parentheses indicate which taxa are
descended from each branch in the tree. Numbers
within the parentheses indicate branch lengths.
This format has the advantage of allowing the tree
image to be represented only by text so that it is
(i) independent of any image format and (ii) takes
up negligible hard-disk space. However, Newick
format is not easily read by humans. Several freely
available software tools allow one to convert any
Newick formatted tree into a print-quality image,
including Phylodendron and TreeView (Table 4.1).

Other Analysis Tools

Gene Expression Analysis

Unlike the other areas we have discussed so far,
software for highly parallel gene expression anal-
ysis is predominantly commercial in nature. Still,
there are a few webservers that provide standard
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analysis tools (e.g. ep.ebi.ac.uk/EP/EPCLUST/
and bioinfo.cnio.es/dnarray/). In addition, several
academic laboratories and research institutes offer
their software packages for download (a useful
list is maintained at ep.ebi.ac.uk/Links.html).
Many of the challenges associated with microarray
expression data concern image processing. The
positions and boundaries of the spots must
be determined, the background signal must be
subtracted, the intensity values must be nor-
malised to account for differences in loading
and dye strength and a host of other factors.
Once these substantial tasks are accomplished,
the typical downstream analyses that are done
with microarray expression data (or other highly
parallel expression techniques) fall into several
classes: detecting which genes are differentially
regulated between treatments, identifying clusters
of genes with similar transcriptional profiles and
classification of different samples on the basis
of transcriptional profile. There are many recent
reviews of these issues (e.g. Quackenbush, 2001;
Sherlock, 2001).

Protein Structural Analysis

The structure of a protein is crucial to its function.
As a general rule, substitutions which alter
the structure of a protein will tend to alter
its function in some way while substitutions
that leave the structure unchanged are usually
neutral (Chothia and Lesk, 1986). While ab initio
secondary structure prediction (i.e. prediction of
alpha helices, beta sheets and turns) can be done
with a great deal of accuracy, tertiary structure
prediction is one of the major open problems in
computational biology. Prediction of the tertiary
structures of a protein is greatly facilitated if there
is a homologous sequence for which the 3D crystal
structure has been experimentally determined
(reviewed by Baker and Sali, 2001). The website
of the Sali lab at Rockefeller University (guitar.
rockefeller .edu/bioinformatics resources.shtml)
has links to many different comparative protein
structural analysis tools, including meta-servers
that provide centralised web interfaces for multiple
algorithms.

In the interests of space, we must pass over
several major areas of sequence analysis, such as
sequence assembly and gene prediction, but a list

of more comprehensive bioinformatics references
is provided at the end of this chapter.

SPECIAL CONSIDERATIONS FOR PLANT
BIOINFORMATICS

The plants for which the most genomic data are
available are, not surprisingly, the major crops (rice,
maize, soya bean and tomato) plus a handful of
model organisms such as Arabidopsis thaliana and
Medicago truncatula. Although many of these fall
into a limited set of plant families (particularly, the
grasses, legumes, mustards and nightshades), there
are also a number of orphan species of economic
interest, such as cotton, banana and the citrus
crops. This taxonomic diversity of study organisms
presents both challenges and opportunities to
plant genomics and bioinformatics. On the one
hand, genomic information is woefully incomplete
for many important systems. On the other hand,
it is sometimes possible to use data from related
plant species to address this deficiency. This use of
comparative genomic methodology is more easy
in some domains than in others, and generally
works best when investigating those fundamental
cellular processes that are conserved among plants.
A classic case is flower development, for which
models formulated in Arabidopsis and Antirrhinum
provide insight into the developmental genetics of
angiosperms in general (Shepard and Purugganan,
2002). With respect to details of biology specific to
each organism (the production of lint in cotton,
or xylem in poplars), it is more difficult to take
advantage of information obtained from a model
such as Arabidopsis.

Another consideration is that many plant
genomes are complex in the sense that they
have much repetitive DNA and a high degree
of duplication even in genic regions (due to
polyploidy and other processes). This complexity
poses a challenge to many kinds of genomic
analyses, among them: (i) the assembly of genomic
sequences (because of spurious matches between
repeat units); (ii) the computational prediction
of protein-coding genes, intronic splice sites and
functionally important non-coding features and
(iii) the analysis of mutant phenotypes (due to
increased functional redundancy). While it is
only a partial solution, comparative sequence
analysis can help to identify those sequences that
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are conserved across taxa and thus likely to be
functionally important (e.g. Koch et al., 2001).

BIOINFORMATICS-BASED DISCOVERIES
IN PLANT GENOMES

Some of the most important contributions bioin-
formatics has made to plant biology have been as
part of larger projects in which experimental and
computational studies were closely intertwined.
Nevertheless, it is possible to point to studies
in which bioinformatics played a critical role in
connecting ideas or testing hypotheses.

Comparative Mapping

Comparative mapping centres on the identification
of homologous chromosomal regions based upon
the conservation of linkage relationships among
homologous markers. In the late 1990s, the
availability of extensive sequence information from
Arabidopsis motivated a number of researchers
working on genetic mapping in crops to start
using Arabidopsis as a point of comparison. Such
comparative maps would allow researchers to
exploit gene content information from Arabidopsis
to provide candidate genes for traits mapped to
homologous regions in other species. Unlike the
earlier generation of comparative maps, which
generally involved closely related species within a
family (e.g. Tanksley et al., 1992), non-sequence
based molecular markers could no longer be
used for such distant comparisons. Thus, a
bioinformatics approach must be used. Sequences
from the crop species are characterised and
mapped using traditional linkage analysis. The
orthologous sequence is then mapped in silico
to the Arabidopsis genome using available data.
For example, this strategy has been employed
in the development of a tomato-Arabidopsis
comparative map, in which approximately 1000
markers have been developed to identify regions of
chromosomal homology (described at the website
of the Solanaceae Genome Network, Table 4.1).
An unexpected outcome of such comparative
mapping studies has been the discovery of multiple,
ancient, large-scale genome duplications in the
lineage that gave rise to Arabidopsis and many
other eudicot species (Grant et al., 2000; Ku et al.,
2000; Vision et al., 2000; Mayer et al., 2001).

Evolution of Disease Resistance Genes

Many disease resistance proteins in plants have a
very characteristic domain architecture consisting
of a nucleotide binding site (NBS) region and a
leucine-rich region (LRR). Other domains, chiefly
related to intercellular signalling, typify different
subfamilies of NBS-LRR proteins. The evolution
of new recognition specificities in these proteins
is an area of considerable practical interest.
Evolutionary theory predicts that genes evolving
under divergent selection (also known as positive
selection), where there is continual pressure for
new functionality such as recognition specificity,
will show an accelerated rate of replacement
relative to silent DNA substitution (as discussed
above). Statistical methods have been developed
to estimate these rates on a per-site basis so that
the number of silent and replacement substitutions
can be directly compared. Using these measures,
one can test whether the ratio is significantly
greater than one, which would be indicative of
positive selection (Hughes, 2000). Application
of these methods to genes in the NBS-LRR
class has revealed that hypervariable solvent-
exposed residues in the leucine-rich-repeat region
have elevated ratios of replacement to silent
substitutions (Michelmore and Meyers, 1998).
This suggests that they have evolved to detect
variation in pathogen-derived ligands.

In addition, NBS-LRR proteins are frequently
clustered within the genome in tandem or near-
tandem arrays. Because of this, it was thought for
some time that new resistance specificities evolved
via unequal crossing-over and gene conversion
between tandemly arrayed paralogues. However,
phylogenetic studies of the genes in several of
the clusters (such as the Pto and Cf4/9 clusters
of tomato) indicate that this is not generally the
case, because the alleles are more closely related
within than between the tandemly arranged loci.
Thus, computational techniques from the field
of molecular evolution have provided important
insights into the dynamics of resistance gene
evolution. (Michelmore and Meyers, 1998).

Organellar–Nuclear Gene Transfer

Multiple genomes co-exist within all eukaryotic
cells. In plants, there are three genomes: nuclear,
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mitochondrial and plastid. The mitochondrion
and plastid are believed to be descended from
an alpha proteo-bacterial and a cyanobacterial
endosymbiont, respectively (Margulis, 1970; Lang
et al., 1999; McFadden, 2001). The genomes of
these erstwhile free-living organisms have not re-
mained static. Mitochondrial and plastid genomes
now contain only a subset of those genes thought
to have been present in their free-living ancestors;
most of the genes that remain are involved
directly in organelle function. An unexpected
discovery revealed by recent phylogenetic studies
is that parallel gene transfers to the nucleus
among different plant lineages have occurred more
often than have single unique transfer events–
particularly in certain genes (Martin et al., 1998;
Adams et al., 2000; Millen et al., 2001). In some
cases the protein products of the transferred genes
continue to function within the organelle. In these,
the change from organellar to nuclear encoding
has entailed the acquisition of organelle targeting
signal peptides (chloroplast or mitochondrial)—
obtained from another gene in the genome and
prepended to the ancestral protein sequence. The
resulting proteins have hybrid phylogenetic signals
reflecting the different origins of the two parts of
the protein.

FUTURE PROSPECTS

Computers play an increasingly important role in
biology. In fact, it is likely that future generations of
biologists will perform many of their experiments
in silico. This perhaps has a parallel in the early
years of molecular genetics, when classical studies
of phenotypic inheritance came to be enriched by
the powerful tools of molecular biology. The tools
of bioinformatics and computational biology are
to us now what molecular biology was then. As
researchers continue to accumulate large amounts
of biological information, we anticipate that a
lot of biological insight will be gained from the
innovative application of computational methods.
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