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The identification of homologous regions between chromosomes forms the basis for studies of genome
organization, comparative genomics, and evolutionary genomics. Identification of these regions can be based on
either synteny or colinearity, but there are few methods to test statistically for significant evidence of
homology. In the present study, we improve a preexisting method that used colinearity as the basis for statistical
tests. Improvements include computational efficiency and a relaxation of the colinearity assumption. Two
algorithms perform the method: FullPermutation, which searches exhaustively for runs of markers, and
FastRuns, which trades faster run times for exhaustive searches. The algorithms described here are available in
the LineUp package (http://www.igb.uci.edu/∼baldig/lineup). We explore the performance of both algorithms
on simulated data and also on genetic map data from maize (Zea mays ssp. mays). The method has reasonable
power to detect a homologous region; for example, in >90% of simulations, both algorithms detect a
homologous region of 10 markers buried in a random background, even when the homologous regions have
diverged by numerous inversion events. The methods were applied to four maize molecular maps. All maps
indicate that the maize genome contains extensive regions of genomic duplication and multiplication.
Nonetheless, maps differ substantially in the location of homologous regions, probably reflecting the incomplete
nature of genetic map data. The variation among maps has important implications for evolutionary inference
from genetic map data.

Comparative genetic maps are constructed by identifying the
location of homologous genes or other markers on two dif-
ferent chromosomes. From this location information, one im-
portant goal is to identify conserved (or homologous) chro-
mosomal regions between chromosomes. Identification of
chromosomal homology can be based on synteny, which re-
fers to shared molecular markers between chromosomes, or
colinearity, which includes shared markers and shared order.
Once homologous regions have been identified between or
within genomes, these regions form the basis for studying
genome organization, evolution, and function.

Given homologous regions either within or between ge-
nomes, several statistical models have been devised to esti-
mate the size and number of conserved regions (Nadeau and
Taylor 1984; Nadeau and Sankoff 1998; Burt et al. 1999; Wad-
dington et al. 2000; Kumar et al. 2001). In turn, these esti-
mates are used to infer the number of genome rearrangements
(Nadeau and Taylor 1984; Schoen 2000). The unfortunate
drawback of all of these models is that they assume that ho-
mologous chromosomal segments are easily identifiable.
However, homology may not be easy to determine in many
instances, that is, when marker genes have been duplicated,
deleted, or rearranged extensively. The misidentification of
homology may be a substantial shortcoming of comparative

mapping approaches, and correct identification of homolo-
gous segments remains an important problem.

In some cases, the problem of chromosomal homology
has been addressed by the use of guidelines, or definitions. For
example, the Human Genome Organization (HUGO) defines
a conserved (or homologous) chromosomal segment as “the
syntenic association of two or more homologous genes in two
separate species” (Andersson et al. 1996). Although this defi-
nition is helpful, it is obvious that it is not a meaningful
measure in some situations. For example, two species with
thousands of mapped homologous markers will have a “syn-
tenic association of two or more homologous genes,” even
when the location of genes is randomized in one genome
relative to the other. Thus, with a great deal of data, conserved
segments (as per the HUGO definition) accrue as a function of
the number of mapped markers and may not reflect chromo-
somal homology. Furthermore, the HUGO definition does
not explicitly incorporate order or distance information
among markers; this is crucial because closely clustered mark-
ers provide stronger evidence of homology than do widely
dispersed markers.

At the very least, then, guidelines for identifying ho-
mologous regions should have some adjustment for the num-
ber of markers under consideration, their order, and the dis-
tances between them. More importantly, the guidelines
should include some explicit statistical justification to deter-
mine if putative homologous regions provide a pattern be-
yond random expectation. Also note that the problem of ho-
mology identification does not apply exclusively to molecular
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genetic maps. With genomic DNA sequences, genome com-
parisons can be reduced to thousands of inter- and intra-
specific BLAST hits that indicate gene homology. When the
locations of homologous genes are known, this information
can be used to infer chromosomal homologies (see Wolf et al.
2001; Wong et al. 2002).

Simple definitions of homology are very limited, but
even these have not been applied to many study systems. For
example, no consistent standard has been applied to plant
comparative maps, and statistical criteria for establishing ho-
mology have been applied only occasionally (see Grant et al.
2000; Vision et al. 2000). Chromosomal homology is particu-
larly difficult to identify in plants because many plants have
histories of extensive gene, chromosome, and genome dupli-
cation (Wendel 2000).

Recently, Gaut (2001) introduced a method to test
whether colinear runs of genetic markers are expected at ran-
dom between two chromosomes (i.e., are consistent with sta-
tistical noise) or instead provide evidence of an underlying
nonrandom pattern. In brief, the method identifies colinear
markers between two chromosomes. Each set (or run) of co-
linear markers is measured by the number of markers in the
run and by the distance covered by the run (the distance may
be in centimorgans [cM] or base pairs, or in any other distance
measure). The map data are then randomized, and colinear
runs are identified in the randomized data. After many ran-
domizations, it is possible to determine whether the original
colinear run either has more markers than expected by
chance or is more clustered than expected by chance. With
this method, observed runs that are rare in randomized data
are considered regions of potential homology. This statistical
approach was applied to maize (Zea mays ssp. mays) genetic
map data. The method detected roughly 2.5-fold more dupli-
cated regions within maize than were previously noted and
also indicated that up to one third of the maize genome is
multicopy (Gaut 2001).

Although the method applies statistical criteria to the
problem of homology identification, it suffers from several
important limitations. For example, it relies on colinearity to
identify chromosomal homology. The emphasis on colinear-
ity ensures that the method is conservative, but it can also
miss regions of chromosomal homology that have undergone
substantial rearrangement of marker order. In addition, the
method does not consider sub-runs of colinear markers
within a larger run. In situations in which a run contains
many markers but is later found not to be statistically signifi-

cant, potentially significant sub-runs are ignored. Finally, the
method is computationally intensive, limiting its application.

In the present study, we extend the method of Gaut
(2001) by introducing two new algorithms that make the gen-
eral approach more computationally feasible. These algo-
rithms also relax the emphasis on colinearity and examine
sub-runs nested within longer colinear runs. We investigate
the performance of the algorithms by exploring their power
to identify simulated regions of chromosomal conservation.
We also apply the method to four different molecular genetic
maps of maize. These maps are based on a different number of
molecular markers and, in some cases, on different parental
crosses. They thus provide a resource for determining whether
information about chromosomal homology is consistent
among maps. All maps indicate that maize has extensive re-
gions of chromosomal duplication, but information among
maps differs substantially, underscoring the weaknesses of ge-
netic map data for inferring chromosomal structure and evo-
lution.

RESULTS

Simulated Data
Detection of colinear runs can be very time- and memory-
intensive when marker density is high, and there is a com-
mensurately large number of colinear runs. We constructed
simulated data to examine two aspects of the FastRuns and
FullPermutation algorithms (described in Methods): (1) per-
formance with increasing data complexity and (2) statistical
power to identify conserved regions.

Performance With Increasing Data Complexity
We constructed simulated data by placing cross-hybridizing
marker pairs randomly on two artificial chromosomes of 100
cM in length. We then identified colinear runs in the simu-
lated data. For each of 100 data sets, run analysis was per-
formed six times: FullPermutation with D = 0, 1, and 2 cM;
and FastRuns with D = 0, 1, and 2 cM. The I and O parameters
of the FullPermutation algorithm were set to zero. (Each pa-
rameter is explained in the Methods).

As expected, the number of identified runs increased
with marker density (Table 1). The number of runs also in-
creased with D. With FullPermutation and 400 marker pairs,
the number of runs increased >60-fold between D = 0 and
D = 1 and >40-fold between D = 1 and D = 2. For all data sets,

Table 1. Analysis of Random Data Constructed Under the Null Hypothesis of No Regional Homology

No. marker pairs 50 100 200 400

Method no.a prop (SD)b no.a prop (SD)b no.a prop (SD)b no.a prop (SD)b

Full D = 0 28 0.06 (0.07) 72 0.05 (0.04) 155 0.05 (0.02) 382 0.05 (0.02)
Full D = 1 81 0.06 (0.05) 350 0.05 (0.03) 2201 0.05 (0.02) 25,529 0.05 (0.01)
Full D = 2 165 0.05 (0.04) 1053 0.05 (0.02) 11,657 0.05 (0.02) >106 NAc

FastRun D = 0 23 0.06 (0.08) 54 0.06 (0.04) 120 0.05 (0.03) 293 0.05 (0.02)
FastRuns D = 1 64 0.06 (0.05) 264 0.05 (0.03) 1480 0.05 (0.02) 11,596 0.05 (0.01)
FastRuns D = 2 126 0.05 (0.04) 707 0.05 (0.02) 5527 0.05 (0.02) 61,921 0.05 (0.01)

aAverage number of identified runs, based on 100 data sets.
bAverage proportion of significant runs, based on 100 data sets, under � = 0.05. For each of the 100 data sets, significance was based on 100
Monte Carlo simulations.
cNA indicates not available; analysis was terminated owing to lack of memory.
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FastRuns identified substantially fewer runs than did FullPer-
mutation analysis, but analysis was more rapid. For example,
with 400 marker pairs and D = 2, FastRuns completed run
detection in 5 sec, whereas run detection was terminated after
4 h with FullPermutation. The important issue, which we ad-
dress below, is whether the identification of fewer runs sub-
stantially hampers the ability of FastRuns to detect regions of
significant colinearity.

To investigate type I error, we determined the average
proportion of runs that were statistically significant for the
100 data sets (Table 1). When significance was based on 100
Monte Carlo simulations per data set, the average type I error
was not significantly different from 0.05 for all conditions
examined (Table 1). Furthermore, the standard deviation of
this proportion decreased with the number of markers in the
data set, indicating that the type I error converges on 5% with
unlimited data. Altogether, statistics were well behaved under
the null hypothesis of random data for both algorithms.

Statistical Power
It is unclear to what extent differences between the FastRuns
and FullPermutation algorithms affect the statistical power to
identify significant runs. To explore the statistical power of
both algorithms, we generated data for two chromosomes.
These two chromosomes were given a “random background”
of markers that mimicked the maize UMC98 genetic map
(Davis et al. 1999). In the UMC98 map, the average chromo-
some length is 170 cM, and each chromosome contains ∼60
markers that are assigned to that chromosome but also
cross-hybridize to one other location in the maize genome.
Thus, simulated data consisted of two chromosomes of
170 cM, each of which was assigned 60 markers. On aver-
age, 20% (reflecting that we are simulating two out of 10
chromosomes) of the 120 total markers were found in two
copies.

On top of this random background, 5, 10, or 20 marker
pairs were placed in colinear order on the two chromosomes.
These were distributed uniformly over a distance of 20 cM in
the middle of the chromosomes. The resulting data sets had
“real” and “perfect” colinear runs buried in a random back-
ground. On one of the two chromosomes, we also inverted
adjacent markers within the 20-cM region to simulate chro-
mosomal divergence.

Each of the 100 simulated data sets were subjected to run
analysis with the FastRuns and FullPermutation algorithms.
We first counted the proportion of data sets in which some
portion of the 20-cM conserved region was identified at the
0.01 significance level (Fig. 1). When either 10 or 20 markers
comprised the colinear run, some of the region was detected
in >90% of simulated data sets with both algorithms. The
conserved 20-cM region was identified even after 10,000 in-
versions effectively randomized the order of markers, even
with D = 0. Presumably part of the region was still identified
as statistically significant with D = 0, because some small
number of markers, representing a small proportion of the
20-cM region, remained colinear by chance after inversion
and also remained closely spaced relative to the random back-
ground. With conserved regions of five colinear markers, a
perfect run was detected in ∼100% of data sets, but after only
10 inversions, the conserved region was detected in <60% of
data sets.

We also calculated the average percentage of the 20-cM
region that was identified as conserved (Fig. 1). When the

region contained 20 colinear markers and no inversions, the
entire region was identified in all 100 data sets, regardless of
the value of D. After up to 10,000 inversions, >90% of the
region was detected with D = 1 or D = 2, but with D = 0, de-
tection tailed off considerably to 35%. Similarly, when the
region contained 10 colinear markers, >90% of the region was
detected with D = 2 no matter the number of inversions, but
detection tailed off as a function of the number of inversions
with D = 0 and D = 1. These observations can be explained by
the D parameter: When markers were located within the dis-
tance stipulated by D, the algorithms rearranged inverted
markers and found most of the original colinear run. In effect,
the D parameter serves to relax the colinearity assumption,
not unlike the O parameter (see Methods). In the absence of a
random background, FullPermutation will always find the
complete original run when all markers are �D cM apart. In
contrast, on average only ∼20% of the 20-cM region was de-
tected when the region contained five inverted markers. In
this case, the markers were too physically distant (20 / 5 = 4
cM) to permit rearrangement with any D < 4.

The FastRuns and FullPermutation algorithms identified
the conserved 20-cM region equally well (Fig. 1). The two
methods differed, however, in one aspect: the misidentifica-
tion of the 150-cM nonconserved region as part of a con-
served chromosomal segment (Fig. 1). For example, FastRuns
misidentified ∼20%, on average, of the nonconserved region
when D = 2 and the conserved region contained 20 markers.
In contrast, the FullPermutation method misidentified 11%,
on average, of the nonconserved region, but 11% is still high.
Investigation of data sets in which misidentification was com-
mon indicated that misidentified regions were almost always
adjacent to the conserved region (data not shown). Basically,
colinear runs were overextended from the real conserved re-
gion by including an additional one or two markers from the
adjacent nonconserved region. This phenomenon occurred
more often with high D, when the definition of colinearity
was less strict.

There is a pragmatic solution to the over-extension prob-
lem, which is to examine sub-runs that contain only a small
number of markers, such as four or five. Most of a large con-
served region can be detected by numerous overlapping sub-
runs of three, four, or five markers, and limiting the number
of markers in a run reduces the statistical significance of runs
extended beyond the boundary of a conserved region. As a
concrete example of this pragmatic solution, we limited runs
to a maximum of five markers in length and simulated a con-
served region of 20 markers, with FastRuns, D = 0 and 80 in-
versions. Compared with analyses in which the length of runs
was not limited (Fig. 1), the average proportion of the con-
served region was detected at roughly the same frequency
(72% versus 76% when there was no limitation on the num-
ber of markers in a run) but far less of the nonconserved
region was misidentified as conserved (1% on average versus
16%). These favorable comparisons held over all of the simu-
lation parameters in Figure 1 (data not shown).

Colinear Runs Within Maize Genetic Maps

Comparison of Methods
To assess the performance of the two algorithms on real data,
we applied them to the maize UMC98 genetic map. The re-
sults can be browsed interactively at http://www.igb.uci.edu/
∼baldig/lineup. The FullPermutation and the FastRuns meth-
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Figure 1 The power to detect simulated regions of chromosomal homology with the FastRuns and FullPermutation algorithms. (Top) The
proportion of data sets in which some portion of the homologous region was detected. (Middle) The average proportion of the homologous region
detected. (Bottom) The average proportion of the nonhomologous region detected. For all graphs, black lines represents results based on
simulations in which 20 markers define the homologous region; dark gray, 10 markers; and light gray, five markers. The symbols represent analyses
with different values of D: D = 2 (triangles); D = 1 (circles); and D = 0 (squares). Horizontal lines represent approximate standard deviations when
available. The apparent dip in ability to identify a portion of the conserved region after 40 inversions (but not 80 or 10,000) disappears as the size
of the simulated data set increases (data not shown).
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ods were both applied with D = 0, D = 1, and D = 2, with I and
O = 0. We used several metrics to compare the results of the
six alternative applications. The least precise but simplest
metric was recording the chromosome pairs between
which runs were detected (Table 2). Twenty-six directed
chromosomal pairs (i.e., from one chromosome to another)
out of 100 possible pairs (10 � 10) were detected by at least
one application. Nineteen of these were detected by all six
applications, indicating a high level of general agreement.
Of the seven chromosome pairs that were found by some,
but not all, methods, six and seven were not detected by
FullPermutation and FastRunss, respectively, when there was
no allowance for map error (i.e., D = 0). This is not surprising
considering D = 0 represents the strictest run definition and
assumes, incorrectly, that there is no error in the map order of
markers.

This chromosome-by-chromosome comparison was fine-
tuned to the level of map units. Precise portions of the map
were scored according to whether they were detected as runs
by both, neither, or one of the methods under comparison. In
the first two cases, the methods are in agreement, and in the
latter, they disagree. This comparison was expressed as the
proportion of the genome in colinear runs in the reference
data set that is also in colinear runs in the compared data set
(Table 3). This measure is asymmetric by definition, because
one data set can be a subset of a larger dataset, in which case
the overlap is 1.00 in one direction and some fraction in the
other.

This metric uncovers a surprisingly high level of agree-
ment between the FullPermutation and the FastRuns methods
despite the algorithmic compromises of the latter. For ex-
ample, the two algorithms agree �95% of the time when ap-
plied with the same D value. Thus, with these data, the
FastRuns algorithm is a reasonable compromise. More sub-
stantial differences between results arise when the map error
allowance (D) is changed. Regardless of the algorithm
(FullPermutation or FastRuns), the results with D = n are al-
most completely a subset of D � n, with an overlap of 91%
(Table 3).

Comparison of Maize Genetic Maps
With the statistical tools available in LineUp, it is now pos-
sible to compare inferences about intra-genomic homology
based on different maize genetic maps. Different genetic maps
of the same genome may vary in many respects, including
marker density, marker selection, and perhaps the parents on
which the mapping population was based. Genetic maps
therefore differ by both investigator biases and stochastic
(sampling) effects. Here we assess variation among the maps
with respect to the extent and location of chromosomal du-
plication. The four maps are described in Methods.

We compared colinear runs from four maps, as detected
by the FastRuns algorithm with D = 2. We used D = 2 because
it approximates the uncertainty in mapping position for
UMC98. Four features of these comparisons were noteworthy.
The first feature was the total number of runs and the num-
bers that were significant (Table 4). For all four maps, at least
17% of runs were significant at � = 0.01, and thus, there are
far more significant runs than expected under randommarker
order. For the purpose of presentation, it is easiest to combine
significant sub-runs and report the number of significant
“blocks” of homology. BNL96 and UMC98, two maps that
contain a similar number of cross-hybridizing markers but
were based on different mapping populations, had similar
numbers (42 and 41, respectively) of blocks (Table 4). A com-
posite map (Pio99), with four times the number of markers,
had eightfold more blocks (323). The relatively data-poor
IBM02 map had only five significant colinear blocks. Alto-
gether, each map contained evidence of substantial intra-
genomic homology, but the number of significant homolo-
gous blocks increased as a function of the number of cross-
hybridizing markers.

The second noteworthy feature of comparisons was the
proportion of the maize genome inferred to be duplicated or
multicopy. The location and centimorgan length of runs in
UMC98 indicated that ∼63% of the genome is duplicated or
multicopy (Table 4). This result was consistent with the
BNL96 map, which indicated that 64% of the maize genome
is duplicated or multicopy. In contrast, the Pio99 map data
implied that ∼85% of the genome is at least duplicated. Only
17% of the genome was inferred to be duplicated from the
IBM2002 data, probably reflecting the low number of cross-
hybridizing markers in this map (Table 4).

The third feature was the chromosomal pairs inferred to

Table 2. Chromosome Pairs Containing Colinear Runs
Identified by Different Methods

Reference chromosome

1 2 3 4 5 6 7 8 9 10

1 a a a a
2 a a a
3 a a a
4 a a
5 a a
6 f
7 a g
8 a b c b
9 a d e

10 a a

aDetected by all methods.
bDetected by all methods except Full D = 0, Fast D = 0.
cDetected by all methods except Full D = 0.
dDetected by Full and Fast methods with D = 1.
eDetected by Full with D = 2 and Fast methods with D = 1,2.
fDetected by Full with D = 1.
gDetected by Fast with D = 2.

Table 3. Comparison of Methods at 1% Significance
Implemented on the UMC98 Data Set

Reference method

Full
D = 0

Full
D = 1

Full
D = 2

Fast
D = 0

Fast
D = 1

Fast
D = 2

Full D = 0 0.79 0.78 1.00 0.77 0.80
Full D = 1 0.99 0.94 0.99 0.97 0.95
Full D = 2 0.91 0.87 0.91 0.84 0.95
Fast D = 0 0.99 0.78 0.77 0.76 0.79
Fast D = 1 0.99 0.99 0.93 0.99 0.95
Fast D = 2 0.95 0.90 0.98 0.95 0.88

Each column shows the proportion of overlap of the results from
the reference method (column label) with the results from the
compared method (row label). A value of 1.00 indicates that the
reference method is a subset of the compared method.
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contain homologous regions. Although the BNL96 and
UMC98 maps contained similar numbers of significant
blocks, the chromosomes that contained runs varied substan-
tially between maps. For example, the BNL96 map contained
31 directed chromosome pairs and the UMC98 map con-
tained 23 directed chromosomal pairs (Table 5), yet the maps
concurred on only 12 of these directed pairs. When chromo-
somal pairs were counted in either direction, only five chromo-
somal pairs were inferred to contain duplicated regions with
both maps, out of 27 total pairs inferred from both maps (Table
5). Thus, remarkably, the twomaps aremore different than simi-
lar regarding the location of inferred duplicated regions.

In contrast, analysis of the Pio99 map detects 69 of 100
possible directed chromosomal pairs, including all of the
chromosomal pairs detected in BNL96 and UMC98. This lat-
ter observation may not be surprising, however, considering
that Pio99 is an amalgamation of UMC98, BNL96, and other
maps. Only three chromosome pairs (chromosomes 1 and 5,
2 and 10, and 4 and 5) were detected in IBM02; all three were
identified in the other maps.

The final feature was the centimorgan location of the
duplicated runs, which varied from map to map, even when
the same directed chromosome pairs were identified. For ex-
ample, three of the four maps detected a homologous seg-
ment between chromosome 4, as reference, and chromosome
5 (Fig. 2; complete results are found at http://www.igb.uci.
edu/∼baldig/lineup/). In this case, the duplications based on
BNL96 and UMC98 largely overlapped with Pio99 duplica-
tions but did not overlap with each other, again indicating
that the BNL96 and UMC98 maps contain different informa-
tion regarding the location, but not the extent, of duplication
within the genome.

DISCUSSION

Detection of Homology
With LineUp
One goal of this study is to improve
a preexisting method to identify
conserved chromosomal regions by
using data from cross-hybridizing
markers, their locations, and their
colinearity. To this end, we have
created a program, called LineUp,
that incorporates two algorithms to
detect conserved chromosomal re-

gions. The first algorithm, FullPermutation, detects all pos-
sible runs between two chromosomes and incorporates three
parameters: I, O, and D. All three parameters allow the as-
sumption of colinearity to be relaxed. Although we did not
examine the effects of I explicitly here, it has been included to
permit the user to relax the colinearity assumption on the
reference chromosome by allowing inserted non-colinear
markers. The parameter O allows a run on the test chromo-
some to have O order violations. Both I and O are measured in
terms of the number of markers that are allowed to interrupt
colinearity and are probably best applied in the context of
exploratory data analysis.

The exhaustive approach can be computationally inten-
sive, and hence, an approximate method, FastRuns, has also
been implemented. FastRuns incorporates only the D param-
eter, which simplifies the algorithm but still permits substan-
tial flexibility (see below). Both algorithms can be applied to
chromosomes from the same or different genomes. Other ap-
proaches for detecting homology between chromosomes
from different genomes have been published (Sankoff et al.
1997; Wolf et al. 2001). For example, Sankoff et al. (1997)
determined the number of conserved segments between
two chromosomes by minimizing a single metric that incor-
porates all data between two chromosomes. By minimizing
or maximizing a single function across the data, this and
other optimality approaches do not perform an exhaustive
search of individual runs. LineUp differs from optimality
methods because it is exhaustive; that is, it considers all runs,
scores all runs, and computes a probability score for all runs.
This exhaustive approach is algorithmically feasible in part be-
cause runs are defined so that only a linear, as opposed to qua-

dratic, number of possible runs needs
to be considered (see Methods).

The D parameter was incorpo-
rated initially to represent uncer-
tainty in mapping order (Gaut
2001). We have shown, however,
that with efficient algorithms, D
can also be used to relax the colin-
earity assumption. When D is large,
the D parameter aids recovery of
homologous regions that have di-
verged from colinearity by inver-
sion. Increasing D increases the to-
tal number of runs identified (Table
1), but does not always increase the
number of significant runs. One ex-
ample may suffice to show why this
is the case. A run of three markers
between chromosomes 1 and 8 is
significant (p � 0.05) under the

Table 4. Properties of Runs at 1% Significance Detected in Different Maize Genetic Maps
by the FastRuns Method With D = 2

Map
Multicopy
markers No. runs % significant No. blocks

Genome
coverage

BNL96 613 31,235 17.1 42 0.64
IBM2002 138 50 48.0 5 0.17
Pio99 2415 105,637 16.5 323 0.85
UMC98 616 3173 41.1 41 0.63

Table 5. Chromosome Pairs With Colinear Runs Identified in Different Maps at
1% Significance

Reference chromosome

1 2 3 4 5 6 7 8 9 10

1 p bp bpu pu bpiu p p bp bpu p
2 bp p bp p pu p bpu bp bpiu
3 bpu p bp p p p bpu p pu
4 pu p p bp bpiu p bp p bp p
5 bpiu p p bpu p bp p
6 p p p p p p p
7 p bpu p bp b p p
8 bp p bpu bp p pu pu pu bp
9 pu bp p bp pu p

10 piu pu bp p bp p

The map names are abbreviated to the first letter: b, BNL96; p, Pio99; i, IBM2002; and u, UMC98.
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FastRuns method with D = 0 and the Pio99 data, but not for
other D values. This three-marker run is identified with other
D values, but it is not significant because the D parameter
gives the algorithm sufficient flexibility to detect similarly
sized runs frequently via Monte Carlo permutation. If the data
contain many runs like this, increasingD need not necessarily
result in more significant runs.

The boundary condition ofD = � is particularly notewor-
thy. In this case, LineUp rearranges all markers along a chro-
mosome until the longest possible colinear run is constructed.
As a consequence, the marker order from the original map is
not retained, the assumption of colinearity is relaxed com-
pletely, and LineUp becomes a test for marker clustering.
Clustering relies on only two pieces of information: the num-
ber of markers and the distance in which they are located.
Although there are more efficient methods to examine clus-
tering without consideration of colinearity (S. Hampson, un-

publ.), the flexibility of D permits researchers to detect ho-
mology while varying the rigor of the colinearity assumption.

For a given D value, the FullPermutation and FastRuns
algorithms behave almost identically. For example, their
power to detect simulated regions of colinearity are equally
high; with a colinear run of 10 markers in 20 cM, the algo-
rithms can detect the homologous region �90% of the time
(Fig. 1). Furthermore, results based on the UMC98 data set are
virtually identical between methods (Tables 2, 3). They do
differ, however, in run time; FullPermutation was terminated
after 5 h with the most marker-dense simulated data. This
density (400 marker pairs in 100 cM) was similar to the overall
density observed in regions of the maize Pio99 genetic map,
which averages 3.84 markers per centimorgan. However,
some regions of the Pio99 map contain >20 markers per cen-
timorgan, and hence, some regions exceed simulated densi-
ties. Thus, with D > 0, FullPermutation may not be computa-

Figure 2 Regions of maize chromosome 4 detected as colinear with other maize chromosomes in BNL96, IBM2002, Pio99, and UMC98 genetic
maps. Chromosome 4 is shown on the left of the figure, with map units scaled between zero and one to allow comparisons between the genetic
maps. A map position of one represents the end of the chromosome in each of the maps.
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tionally feasible on particularly dense genetic maps or on ge-
nomic sequence data.

In addition to run time, the biggest difference between
the FastRuns and FullPermutation algorithms is the extent to
which runs within a conserved segment are “over-extended”
into the nonhomologous region (Fig. 1). The algorithms share
this negative feature, but it is not clear why the two algo-
rithms differ in this trait (Fig. 1). We have shown, however,
that a pragmatic solution to this problem is to limit the maxi-
mal number of markers in a run, and this solution is valid
over a wide range of D values. We should also note that this
negative feature is overstated by our simulations. Our simu-
lations placed markers at the boundary of conserved seg-
ments, so that all over-extension incorporated nonhomolo-
gous regions. In real data, markers are rarely located at the
precise boundary of a homologous region (Nadeau and Taylor
1984). As a result, extension beyondmarkers in a homologous
region will often incorporate regions of true homology.

Both algorithms use asymmetric run definitions (see
Methods). When I = 0 and D = 0, markers must be in colinear
order without an intervening gene on the reference chromo-
some, but can be interrupted on the test chromosome. This
asymmetry arises through algorithmic compromises to reduce
the order complexity of comparisons (see Methods), but it
does have some use for biological interpretation. The first is
that we have greater confidence in the homology of genomic
arrangements when at least one of the chromosomal seg-
ments does not contain any intervening genes. This is analo-
gous to inter-genomic studies of synteny conservation, in
which genes that are adjacent in one genome are assessed for
their proximity (not adjacency) in another genome (see
McLysaght et al. 2000a).

The second biological interpretation that can be gleaned
from the asymmetry of colinear runs is inference about the
rearrangement history of genomic segments. When a pair of
homologous chromosomal segments contain many of the
same genes in the same order, but on one chromosome these
genes are interrupted by other genes, then one or both of
these segments must have been affected by local rearrange-
ments and/or gene deletions and insertions. These rearrange-
ments must have been primarily local, because they did not
substantially change the contents of the genome segment.
There is already considerable evidence from various eukaryote
genomes that small local rearrangements may be common
(Bennetzen 2000; McLysaght et al. 2000b; Seoighe et al.
2000).

Application to Maize
A second goal of this study was to determine the extent to
which duplicated regions were consistently inferred among
different maize maps. Typically, both comparative mapping
and evolutionary studies rely on a single genetic map from
any one species. Consideration is rarely, if ever, given to the
fact that a genetic map is the single realization of an experi-
mental process that includes stochastic effects and investiga-
tor biases. As a result, information must vary to some degree
from map to map. In the present study, we have examined
variation among four maize genetic maps, with the overall
goal of gaining a more accurate picture of maize genome or-
ganization. A more accurate picture can help guide ongoing
physical mapping efforts and the potential complete genome
sequencing of this important crop.

We first consider results based on UMC98. A similar but

less complete approach detected extensive genome duplica-
tion in maize based on these data (Gaut 2001). Here we have
improved the algorithm but obtained similar results. The
main differences arise in the significance of reported runs;
some runs that are significant in one study were found to be
just beyond the significance threshold in another. These dif-
ferences may be attributable, in part, to some errors we dis-
covered in the UMC98 data set used by Gaut (2001) and also
to the identification of significant sub-runs within nonsignifi-
cant runs. The results reported here and on our Web page
should be considered definitive. Nonetheless, both analyses
of UMC98 infer that >60% of the maize genome is either
duplicated or multicopy (Table 4). Many of these regions are
multicopy. The multicopy proportion can be estimated from
blocks that overlap on more than two chromosomes. In the
present study, we estimate that 20% of the genome is multi-
copy from UMC98 data; Gaut (2001) estimated that from 12%
to 35% of the genome was multicopy.

UMC98 and BNL96 yield similar information about the
maize genome in many respects. Both UMC98 and BNL96
contain ∼40 significant blocks, both indicate that the genome
consists of ∼60% duplicated chromosomal regions (Table 4),
and both indicate that the multicopy region is �13% of the
genome. Nonetheless, the maps disagree far more than they
agree regarding the location of interchromosomal homolo-
gies (Table 5). The location information from the two maps is
sufficiently different to consider factors that contribute to
these differences.

Two biological factors could contribute to map differ-
ences between UMC98 and BNL96. First, the distribution of
recombination along chromosomes can vary substantially,
depending on the mapping population. This is especially true
in maize, in which recombination is physically heteroge-
neous and some allelic combinations may not recombine
(Freeling 1976; Fu et al. 2002). This observation is salient for
our purposes because the standardized distance used to com-
pare maps in Figure 2 may not accurately represent the physi-
cal position of duplicated regions, if recombination rates vary
among regions and among mapping populations. However,
this explanation does not fully explain why the two maps
implicate different chromosomes (not just different locations
along the same chromosomes) in duplications. Second, there
may be real differences in genome organization, genic loca-
tion, and gene arrangement, even among individuals within a
single species. Recent comparison of an orthologous region
between two maize inbred lines revealed that the region dif-
fered substantially in many features, including gene content
and gene position (Fu and Dooner 2002). These local differ-
ences could extend throughout the genome, and thus, par-
ents of different mapping populations could vary substan-
tially in genomic content and organization. Unfortunately, it
is unclear to what extent this explanation contributes to dif-
ferences between the UMC98 and BNL96 maps.

Another important consideration is sampling. If neither
map contains sufficient cross-hybridizing markers, than nei-
ther provides a complete picture of the organization of maize
duplicated regions. If this is true, each map captures a “snap-
shot” of the genome but does not provide an accurate overall
picture of genomic complexity. We favor this interpretation
of the differences between UMC98 and BNL96, for three rea-
sons. First, Arabidopsis thaliana genome data has shown that
genetic map data may greatly underestimate genomic com-
plexity. The A. thaliana genome sequence indicates that ∼70%
of the genome is duplicated (Arabidopsis Genome Initiative
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2001), but only 17% of markers on genetic maps cross-
hybridized (McGrath et al. 2001). Second, analyses based on
Pio99, which has four times the number of cross-hybridizing
markers, identify chromosomal homologies on all chromo-
somal pairs identified by both UMC98 and BNL96. Thus,
analyses of the larger Pio99 data set indicate that inferences
based on BNL96 and UMC98 are accurate but incomplete.
Finally, the estimated proportion of maize duplicated regions
increases with marker number, indicating that increasing the
number of markers increases information. With Pio99 data,
we estimate that 83% of the genome is at least duplicated and
up to 69% of the genome is multicopy.

Pio99 provides a more complex picture of the genome
than does either UMC98 or BNL96, but we must inject a cau-
tionary note. Pio99 has more markers than does UMC98 or
BNL96, has more total runs, and therefore has commensu-
rately more runs significant at the 1% level (approximately
three times more than BNL96). More significant runs could
conceivably result in higher estimates of multicopy and du-
plicated regions in the Pio99map. However, we do not believe
that marker number alone accounts for increased genomic
complexity with Pio99 data, for two reasons. First, BNL96 has
fourfold more significant runs than does UMC98, but the es-
timated proportion of duplicated and multicopy regions is
similar. There is thus no obvious relationship between the
number of runs and the estimated duplicated proportion. Sec-
ond, additional markers could contribute to the over-
extension problem, thus artificially increasing estimates of
the proportion of duplicated and multicopy regions with
Pio99 data. We performed simulations to determine whether
the number of markers in the random background increases
the overextension problem, and it does not (in fact, it de-
creases the problem; data not shown). In addition, when we
applied FastRunss with D = 2 and limited runs to five markers,
estimates of the duplicated proportion of the maize genome
decreased only slightly, from 85% to 78%.

One last observation merits discussion. All four maps,
including the relatively sparse IMB02 map, identify interchro-
mosomal homologies on chromosomal pairs 1 and 5, 2 and
10, and 4 and 5. These three chromosome pairs were also
consistently identified in a series of previous studies (Helent-
jaris et al. 1988; Ahn and Tanksley 1993; Moore et al. 1995;
Wilson et al. 1999), indicating that the signal of chromosomal
duplication is particularly strong for these regions. Why? One
possibility is that these regions were duplicated more recently
than were other genomic regions. More recent duplications
have had less time for deletion and rearrangement to obscure
evidence of homology. A second possibility is that these re-
gions were duplicated at the same time as other regions but
have undergone fewer transposition and deletion events since
duplication. DNA sequence data from duplicated regions are
needed to definitively differentiate between these possibili-
ties, but the former possibility seems more likely, given that
many plant genomes have experienced multiple polyploid
events in their past (Wendel 2000). It is thus likely that the
history of maize includes multiple polyploid events (Wilson
et al. 1999; Gaut 2001), both because the genome contains
extensive multicopy regions and because some regions may
be more recently duplicated than others.

Concluding Remarks
Homology identification is an increasingly important prob-
lem, both because of the proliferation of molecular genetic

maps (O’Brien et al. 1999) and because similar approaches can
be applied to genomic sequence data. In the case of genomic
sequence, the cross-hybridizing markers are genes that have
been identified as homologous by BLAST searches. The loca-
tions of these genes are known, and thus determining chro-
mosomal conservation from genomic sequence data can be
reduced to a problem that is similar to that considered in this
paper. To our knowledge, however, only a few algorithms
have been described to test statistically for chromosomal ho-
mology on either map or sequence data (Grant et al. 2000;
Vision et al. 2000), and none are capable of testing the sig-
nificance of a single colinear run while simultaneously con-
sidering rearrangements and physical distances among mark-
ers. Thus, the method described here has some important ad-
vantages. However, genomic sequence data also includes
information about gene orientation and strand, both of
which could aid accurate homology detection. Order and
strand information may be incorporated eventually into the
algorithms introduced here, but current versions of LineUp
are available at http://www.igb.uci.edu/∼baldig/lineup.

Our analyses of maize genetic maps indicate that both
BNL96 and UMC98 underestimate the complexity of the ge-
nome. Given the marked inconsistencies between these and
other maps, it may not be possible to make accurate estimates
of the degree of genomic duplication in maize without more
genomic sequence data. It is clear, however, that the degree of
duplication in maize is similar to, or exceeds, that of A.
thaliana, at ∼70% duplication. It is also clear that much of the
maize genome is multicopy, indicating that the evolutionary
history of maize includes multiple polyploid and/or aneu-
ploid events. Elucidation of these events requires DNA se-
quence analysis, but even with sequence data, the history of
polyploid events may not become entirely clear (Wolfe 2001).

It has long been known that genetic map data are not
ideal for evolutionary inference (see Bennetzen 2000; Gaut
2002), but the variance among maize maps has important
consequences for comparative mapping. With complex ge-
nomes like that of maize, it is likely that a genetic map con-
tains incomplete information about genome organization. If
each genetic map of each species provides only a partial pic-
ture of genome structure, it follows that comparison of maps
compounds the shortcomings and can therefore yield only a
fraction of true genome relationships. In the absence of com-
plete genome sequences from important crop plants, genetic
maps remain an invaluable tool for comparing genomes
among species. It is important, however, to be mindful of
their limitations.

METHODS

General Considerations and Algorithmic Complexity
When a segment of DNA is duplicated, any markers that hy-
bridize with it also hybridize with the duplicate region. If the
segment is large enough to match a reasonable number of
markers, the duplication is easy to detect because identical
order and spacing of markers is unlikely to occur by chance.
However, with time, point mutations, insertions, deletions,
translocations, and inversions will modify both halves of the
pair, so that the originally identical number, order, and spac-
ing of markers is progressively degraded. The goal is to iden-
tify parts of, or all of, the duplicated region despite the accu-
mulation of changes. For simplicity, the segments will be as-
sumed to be on different chromosomes, although in practice
they need not be. We will also assume that information about
the strand on which the marker is located and its orientation
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are not available. In particular, if two markers, AB, are found
in the reverse order, BA, we will not distinguish whether this
is the result of a translocation that preserves orientation or an
inversion that reverses orientation. We will use the math-
ematical term transposition to denote both.

If there are N markers shared between a pair of chromo-
somes, then there are O(N2) candidate runs on each chromo-
some. Exhaustive analysis of two chromosomes in principle
requires all pair-wise comparisons of candidate runs on each
chromosome, which is O(N4). A candidate pair of runs is a
string of consecutive markers on each chromosome of the
form [X1,Xn] = X1X2…Xn on the first chromosome C1 and [Y1,
Ym] = Y1Y2…Ym on the second chromosome C2. Additional
complexity is obtained from how the comparison between
two runs is made; the number of insertions, deletions, and
permutations that can be tolerated; and the distances in base
pairs or centimorgans between the various markers. In par-
ticular, from these parameters one must be able to define a
similarity or distance score d([X1, Xn], [Y1, Ym]) between each
pair of runs. The distance ought to have the flavor of an edit
distance but possibly take into account also the distances be-
tween the markers. Furthermore, in many realistic situations,
the exact ordering of closely spaced markers cannot be re-
solved, so a number of—if not all—different permutations
may be tried, further adding to the algorithmic complexity.
Unless specific parameter ranges or approximations are con-
sidered, the problem rapidly becomes intractable.

Here, for the sake of argument, we first restrict ourselves
to the typical regime in which a marker that hybridizes to two
chromosomes is typically found only once on each of the two
chromosomes. Because only runs that start and end with a
match need to be considered, this immediately reduces the
total number of comparisons from O(N4) to O(N2) between
each pair of chromosomes being considered. Even with only
O(N2) comparisons to be carried out, the complexity of com-
paring two runs can be substantial. By simple sequence align-
ment using dynamic programming, a global alignment of two
runs of n and m markers on two different chromosomes re-
quires O(nm) operations, which typically adds another O(N2)
factor to the complexity. In addition, this straightforward
alignment approach would require defining scores for inser-
tion, deletions, substitutions, and matches that could in prin-
ciple depend also on distance from the previous marker for
the detection of statistically significant homology. Finally, it
would not be able to handle permutations of closely spaced
markers.

We developed a number of algorithmic heuristics to ad-
dress these problems in a practical way that is both compu-
tationally efficient and robust over a wide range of regimes
found in biological applications. Although, in principle, the
detection of homologous regions and the assessment of their
significance can proceed in parallel, here we decouple these
two steps. In particular, we first develop algorithms to detect
candidate pairs of runs (candidate homologous regions) based
purely on marker composition and relative marker positions
and distances. We do so for simple colinear runs and then
introduce three parameters, I, O, and D, to relax colinearity
assumptions in several directions and to control algorithmic
complexity and tradeoffs between specificity and sensitivity.
We then score the candidate runs against different random
background models by using Monte Carlo simulations. De-
coupling the two steps allows us to test different notions of
candidate runs and different background models to assess ro-
bustness and sensitivity issues.

The LineUp Algorithm
Intuitively, two runs that are good candidates for significant
homology between two chromosomes C1 and C2 consist of
two sets of neighboring markers, one on each chromosome,
that share many markers in common. A precise definition,

however, relies on the definitions of neighborhood and simi-
larity. In particular, there are several issues to consider that
may give rise to different definitions:

1. The presence of markers on one chromosome that are not
found anywhere on the other chromosome.

2. Even when only markers common to both chromosomes
are considered, there are, in general, marker insertions and
deletions on each chromosome that disrupt colinearity
and need to be considered.

3. The importance assigned to the ordering of the markers
and, for instance, the number of local rearrangements or
permutations one is willing to tolerate. These permuta-
tions could be the results of inversions.

4. A related issue, in some cases, is the uncertainty associated
with the position of markers. In particular, the ordering of
markers that are extremely close may not be reliable, and it
may be necessary to permute completely the order of
closely spaced markers.

Basic Algorithm
With respect to the first issue, we simplify the problem by
considering only those markers that are found on both chro-
mosomes. In practice, this approximation works well, al-
though in some cases the presence of a number of markers
within a run that are nowhere to be found on the other chro-
mosome could be significant. Such orphanmarkers may even-
tually be included in the definition of similarity.

We then consider each ordered pair of chromosomes (C1,
C2), and for each marker X on the reference chromosome C1,
we look for all the matches on the test chromosome C2 (typi-
cally only one but occasionally there are a few). Then starting
fromX on both chromosomes, we extend the runs to the right
on both chromosomes, using C1 as the reference chromo-
some. During the extension process, the basic version of the
algorithm does not allow insertions of markers on the refer-
ence chromosome C1. Both insertions and deletions are al-
lowed in C2. If during the extension of a run, there is more
than one possible match in C2, the best one (colinear and
close) is chosen. If the best or only choice is not colinear, run
extension is terminated. All runs of three or more markers are
saved, including sub-runs of longer runs.

Looking at pairs of runs that are colinear (order perfectly
preserved), with no insertions allowed on the reference chro-
mosome, has the advantage of yielding a very fast algorithm
that in theory requires at most O(N 2) computations to find all
the runs and, for all practical purposes, only O(N) computa-
tions because the typical length of the runs is bounded. This
algorithm does not treat the two chromosomes symmetri-
cally; therefore, when comparing two chromosomes, it must
be run twice: first using C1 as the reference, and then C2. To
see the effect of asymmetries, consider for example, the runs:

1: A B C D E F X
2: A B C X D E F

Comparing one-to-two yields a run of length six (ABCDEF)
while comparing two-to-one yields one run of length four
(ABCX) and one of length three (DEF). This situation is un-
likely to occur owing to point mutations or random deletions,
but there are some biological events that could have a signifi-
cant impact in this regard. For example, random insertions of
a transposon or retrovirus could add multiple copies of X to
both segments in the above example. This would progres-
sively obscure the original run of six until it could no longer
be detected.

Insertions in the Reference Run (I)
To address the second issue of possible insertions of markers
in the reference run, we can modify the algorithm to allow up
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to I insertions on reference chromosome C1. All possible com-
binations of up to I insertions can easily be incorporated by
dynamic programming. The basic version above corresponds
to the case in which I = 0. In the example above, setting I = 1
allows the insertion of up to one marker, allowing complete
identification of the underlying run. With I = 1, any number
of random insertions can be filtered out to recover the origi-
nal run. In this limiting case, we end up looking for maximal
subsequences of matching markers (P. Baldi, unpubl.).

Order Violations (O)
The third and fourth issues raised above are concerned with
the ordering of the markers and any violation of perfect co-
linearity, owing to, for instance, inversions. Within this class
of possibilities, we first consider order violations that do not
result from markers that are too closely spaced so that their
ordering cannot be resolved.

To address the issue of permuted markers, we introduce a
new parameter O that represents the number of markers on
the test chromosome that are allowed to be out of order as the
runs are grown. When O = 0, the order must be preserved
entirely. When O has an intermediate value, the growth of the
run is aborted as soon as the number of out-of-order markers
exceeds O. When O = � any amount of rearrangement is ac-
ceptable, and the runs are best described in terms of local
clusters of common markers.

For example, consider the following pair of runs with
two transpositions, (AB) (EF), in the second chromosome:

1: A B C D E F
2: B A C D F E

If no out-of-order markers are allowed, the longest run
when comparing one to two is (BCDE); if one is allowed
(BCDEF) is recognized; and with two out of order markers, the
entire run is recovered.

Distance Precision (D)
Finally, for the issue of precision on marker location, we con-
sider here that the order of markers that are within a minimal
distance D cannot be resolved. For example, a particular ge-
netic map may have a mapping resolution of D = 2 cM, mean-
ing that the order of markers �2 cM apart is uncertain. In this
case, it is appropriate to permute the marker order within a
2-cM window in order to minimize false-negative rates. In
practice, this is implemented by growing all the viable per-
mutations on the reference chromosome C1 based on the
D = 2 limit and matching them to the runs on the test chro-
mosome C2, allowing for any possible permutation of closely
spaced markers on C2. More precisely, it permits marker X in
C1 to be temporarily swapped with any marker to the right
occurring within a distance D. Likewise, the choice of the best
matching marker in C2 was modified to reflect resolution
problems. In the unlikely case in which a marker occurs more
than once in the run on C1, but only once in the run on C2,
the marker on C2 can be used only once. The procedure then
recursively calls itself to continue developing the run. This
allows all legal permutations of markers to be tried in C1. By
interleaving permutation and run extension, unproductive
permutations can be cut off as soon as they cease to generate
legal runs. This reordering is the most computationally inten-
sive aspect of the program, so the choice of D can have
significant impact on run time. In the rest of the paper,
this algorithm that tries all viable permutations is called
FullPermutation(I,O,D) or just FullPermutation.

For example:

1: A B DC
2: A CB D

The longest colinear run is length three (ABD) based on
the given order, but if D and C in one and C and B in two are

so close that their actual order is unknown, a run of four is
also possible.

Fast Approximation
Because it tries all legal permutations of the markers on the C1
chromosome, FullPermutation is computationally expensive
and may generate an unmanageably large number of runs in
regions of high marker density. To address both of these is-
sues, a fast-run algorithm was developed that empirically
finds the longest runs, but only some of the sub-runs. The
basic idea is to avoid doing permutations in a permutable
block on C1 by simply taking them in the order they occur on
C2. This determines an appropriate permutation on C1. More
precisely, the FastRuns algorithm is a recursive algorithm that
tries to grow a run to the right. Assuming that the current run
has been grown up tomarker X on C1, the pseudo-code for the
inner loop of FastRuns is given by

for i = X to last marker on C1
{
if marker[i] cannot be swapped with marker[X], break
take markers X through i in the order that they occur on C2
recurse with X = i+1
}

Because the D parameter adequately relaxes colinearity (see
Results) by itself, the I and O parameters have not been incor-
porated into FastRuns.

Probabilistic Models: Computing Run Significance
Run detection, and all its variations, provides a minimal filter
for what might be homologous regions. However, it is suffi-
ciently broad that many runs will also occur purely by chance.
Consequently, it is necessary to further evaluate these runs in
the context of the given data set and select those that are least
likely to occur by chance.

Two properties are used to evaluate a run: the number of
matched markers and the length in centimorgans. Various
measures of length (e.g., absolute value, squared length) were
tried previously (Gaut 2001), and the summed squares (SS)
measure was chosen, although all measures gave similar re-
sults. We continue to use it here. The SS value of a run is the
sum of the squared lengths of its two halves.

To test for statistical significance, for each chromosome
pair (C1, C2), the order of markers on C2 is randomized and
run detection repeated. This is done 1,000 times, and the
results are binned by matched marker number. This provides
an estimate of the background frequency and distribution of
lengths for the runs in each bin. For each candidate run, the
number of random runs with the same marker number but
smaller SS value is tallied. This is divided by the number of
runs in the bin or 1,000, whichever is bigger, to compute the
significance of the run. A 5% cutoff is generally used, but
results can be repeatedly displayed with different cutoffs.

Three methods of randomizing the markers on C2 were
tested: (1) assigning random values between the biggest and
smallest observed in the real data on that chromosome, (2)
leaving the locations the same but permuting the marker
names, and (3) leaving the locations the same but permuting
the marker names only for those markers that matched be-
tween the two chromosomes. The three methods provided
qualitatively similar results (data not shown), and we report
analyses based on the second method.

Maize Genetic Map Data
We applied the FullPermuation and FastRunss algorithms to
simulated data and molecular genetic maps of maize. The al-
gorithms were applied to maize for three reasons: (1) the ini-
tial method of Gaut (2001) was applied to maize, hence fa-
cilitating comparison; (2) the maize genome is complex, pro-
viding an indication of the feasibility of the methods with
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potentially difficult data; and (3) there are several genetic
maps for maize, which allows comparison among them. Four
maize maps were used: the Brookhaven National Lab 1996
(BNL96) map; the University of Missouri, Columbia 1998
(UMC98) map (Davis et al. 1999); the Intermated B73/Mo17
2002 map (IBM02); and the Pioneer 1999 (Pio99) composite
map, which is amalgamated from several sources, including
UMC98 and BNL96. Map data from BNL96, UMC98, and
Pio99 were obtained from MaizeDB at http://www.agron.
missouri.edu/. IBM02 data were obtained from the Maize
Mapping Project at http://www.maizemap.org/.
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