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Abstract

Dosage-sensitive genes have characteristic patterns of evolution that include

being refractory to small-scale duplication, depleted on human benign copy number

variants (CNVs) and enriched on pathogenic CNVs. This intolerance to copy number

change is likely due to an expression constraint that exists in one or more tissues.

While genomic copy number changes alter the encompassed genes’ expression across

all tissues, expression quantitative trait loci (eQTLs) –genomic regions harbouring

sequence variants that influence the expression level of one or more genes– can

act in a tissue-specific manner. In this work we examine expression variation of

presumed dosage-sensitive and non-dosage-sensitive genes to discover how the locus

duplicability constraints translate into gene expression constraints. Here we test

the hypothesis that expression changes due to the presence of eQTLs acting in

unconstrained tissues will not be deleterious and thus allow dosage-sensitive genes

to vary expression while obeying constraints in other tissues. Using eQTLs across 48
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human tissues from The Genotype-Tissue Expression (GTEx) project , we find that

dosage-sensitive genes are enriched for being affected by eQTLs and that the eQTLs

affecting dosage-sensitive genes are biased towards having narrow tissue-specificity

with these genes having fewer eQTL-affected tissues than non-dosage-sensitive genes.

Additionally, we find that dosage-sensitive genes are depleted for being affected

by broad tissue breadth eQTLs, likely due to the increased chance of these eQTLs

conflicting with expression constraints and being removed by purifying selection.

These patterns suggest that dosage-sensitivity shapes the evolution of these genes

by precluding copy number evolution and restricting their evolutionary trajectories

to changes in expression regulation compatible with their functional constraints.

Thus deeper interpretation of the patterns of constraints can be informative of the

temporal or spatial location of the gene dosage sensitivity and contribute to our

understanding of functional genomics.

Author summary Gene duplication is an important and powerful evolutionary force

that is responsible for the expansion of the coding capacity of genomes ultimately resulting

in great genetic novelty. However, the opportunity for this evolutionary change can be

limited by dosage constraints on some genes, meaning they are not normally duplicable,

except in a balanced, whole genome event. This results in important, biologically relevant,

differences between genes that are retained from whole genome duplication events versus

those retained from small scale duplications, especially in terms of dosage sensitivity. We

explored how the different dosage sensitivity in these sets of genes relates to quantitative

expression variation present in populations. We found that while dosage-sensitive genes

are more likely to have their expression levels influenced by genetic variation, these changes

are often specific a small number of tissues. In contrast, genes that are less sensitive to

dosage changes show greater variation in expression levels across multiple tissues. Our

findings suggest that dosage-sensitive genes evolve through fine-tuned adjustments in

their expression levels in specific tissues, thus bypassing constraints operating on other

tissues. This understanding sheds light on how dosage-sensitive genes evolve and could

have implications for understanding human diseases caused by these genes.
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Introduction 1

Gene duplication is a powerful force that is responsible for a great deal of evolutionary 2

innovation (Prince and Pickett 2002). Evolutionary duplications are broadly classified into 3

those that emerge from whole genome duplication (WGD), with the remainder grouped as 4

small-scale duplications (SSDs). At a population genetics level, duplications are observed 5

as copy number variants (CNVs) that are polymorphic between individuals. While it 6

might be tempting to think that a duplicate is a duplicate, a large and growing body of 7

evidence points to the different properties of genes that are retained in duplicate after 8

WGD (termed ’ohnologs’) and those that are commonly observed as SSDs, with ohnologs 9

being generally longer, more highly expressed, slower evolving, and more associated with 10

disease (Makino and McLysaght 2010; Vance and McLysaght 2023). Additionally, retained 11

ohnologs and SSDs have clear differences in terms of dosage-sensitivity, which manifests 12

as copy number constraints. 13

Dosage sensitive genes are an important subset of genes in our genome that include 14

many developmental genes, protein complex members and transcription factors among 15

others (Birchler and Veitia 2012; Maere et al. 2005). They are described for the relationship 16

between gene dosage and functionality, where, broadly speaking, a different dosage will 17

cause a change in functional outcome or even a malfunction (Veitia 2002). In human 18

genetics this is observed as genes with a phenotype (especially a disease phenotype) when 19

the copy number is altered through structural variation (Zhang et al. 2009; Cooper et al. 20

2011). Over evolutionary timescales this creates obvious constraints. These constraints 21

leave distinctive traces in the evolutionary patterns of dosage sensitive genes – they are 22

observed as genes that are refractory to the otherwise pervasive process of gene duplication 23

(Papp, Pál, and Hurst 2003), except whole genome duplication, following which they are 24

disproportionately retained (Birchler, Riddle, et al. 2005; Makino and McLysaght 2010; 25

Birchler, Bhadra, et al. 2001; Tasdighian et al. 2017; Goût and Lynch 2015). 26

Dosage sensitivity also shapes the evolutionary trajectory of the respective genes in 27

various other ways. Previous work has explored gene dosage sensitivity in the context of 28
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evolutionary duplicability, and population-level copy number variation (Papp, Pál, and 29

Hurst 2003; Makino and McLysaght 2010; Rice and McLysaght 2017; Schuster-Böckler, 30

Conrad, and Bateman 2010; Goût and Lynch 2015; Gout et al. 2010), as well as other 31

forms of functional constraint (Xie et al. 2016). 32

There are fewer studies that explicitly test expression evolution of dosage sensitive 33

genes, and those that there are, suggest that the constraints observed on genomic and 34

coding sequence features extend to expression features. Genes whose proteins are members 35

of protein complexes are likely to be dosage sensitive (Papp, Pál, and Hurst 2003), and are 36

also less likely to vary in expression between individuals (Schuster-Böckler, Conrad, and 37

Bateman 2010). Furthermore, genes with protein-protein interactions are more constrained 38

in their regulatory evolution and have less expression polymorphism within populations 39

(Lemos, Meiklejohn, and Hartl 2004). 40

The availability of large expression quantitative trait locus (eQTL; genomic regions 41

harbouring sequence variants that influence the expression level of one or more genes (Al- 42

bert and Kruglyak 2015)) datasets for humans and many other species, means that it is 43

now possible to test the relationship between dosage constraints and expression evolution 44

constraints in a more comprehensive way and at scale (Morley et al. 2004; Cheung et al. 45

2005; Stranger, Forrest, et al. 2005; Stranger, Nica, et al. 2007; West et al. 2007; Dimas 46

et al. 2009; Kelly et al. 2012; Massouras et al. 2012; GTEx Consortium 2017). 47

The Genotype-Tissue Expression (GTEx) project (GTEx Consortium 2017) has 48

characterised eQTLs across a diverse range of human tissues. In Release V7, 95.5% 49

(18,199/19,067) of protein-coding genes tested had their expression influenced by at least 50

one eQTL. Given that such a high proportion of the genome experiences this type of 51

expression variation in control individuals, the majority of the genome must be able to 52

tolerate some amount of mRNA level change without obvious deleterious consequences. 53

However, in combination with genome-wide association studies, eQTLs have been used to 54

elucidate further the pathophysiology of many disease phenotypes. To date eQTLs have 55

been associated with human diseases including asthma, autoimmune disorders, diabetes, 56
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numerous cancers, Parkinson’s disease, and other brain disorders (see Table 1 in Albert and 57

Kruglyak 2015). Additionally, eQTLs have been shown to be under increased purifying 58

selection with gene age where young, primate-specific genes are enriched for eQTLs, 59

having higher effect size and influencing expression in more tissues (Popadin et al. 2014). 60

Therefore, the effect of eQTLs on gene expression and association with important traits 61

makes them of great interest, especially in the context of genes with known expression 62

constraints. 63

Here, we investigated the patterns of eQTLs affecting different types of duplicate 64

genes in the conext of their propensity for dosage-sensitivity. Contrary to the simplistic 65

expectation that ohnologs and other categories of dosage-sensitive genes should be depleted 66

for this variation, we found that these genes are enriched for eQTLs. However, they have 67

fewer eQTL-affected tissues than other genes, as the eQTLs that affect dosage-sensitive 68

genes are more tissue-specific. Dosage-sensitive genes are depleted for broad tissue breadth 69

eQTLs which are likely removed by purifying selection as they conflict with expression 70

constraints. This is consistent with the view that, by contrast to genomic duplications, 71

more subtle dosage changes to dosage sensitive genes may be effectively neutral (Birchler 72

and Veitia 2012). This supports a model where the evolution of dosage sensitive genes is 73

constrained into the comparatively narrow path of tissue-restricted expression changes 74

that do not clash with the essential dosage sensitivity either due to the effect size, or the 75

tissue affected. This opens up the possibility of a deeper understanding of the underlying 76

nature of the dosage sensitivity. 77

Results 78

Ohnologs are often affected by eQTLs, but they are more distinct 79

between tissues 80

We gathered two high-confidence sets of eQTLs from the Genotype-Tissue Expression 81

(GTEx) project V7 (GTEx Consortium 2017). One contains significant single tissue SNP- 82
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gene associations for 48 tissues corrected for testing across multiple tissues (Supp Figure ?? 83

hereafter ‘Bonferroni-corrected eQTLs’). The other results from a GTEx Consortium 84

meta-analysis using Metasoft which increases eQTL detection power by considering data 85

across tissues together and calculates a posterior probability of an eQTL being present 86

in each tissue (Han and Eskin 2012) (hereafter ‘Metasoft eQTLs’). This latter approach 87

is particularly useful for increasing power in tissues with smaller sample sizes (GTEx 88

Consortium 2017). A comparison of the Bonferroni-corrected eQTL dataset and the 89

Metasoft eQTL dataset can be seen in Supp Figure ??. 90

We sought to consider the role of eQTL-based expression variation in the context of 91

gene duplicability and dosage-sensitivity. Assembling a list of dosage sensitive genes is 92

generally based on indirect evidence. Previous work has shown that ohnologs are enriched 93

for dosage-sensitive genes (Makino and McLysaght 2010), as are genes that are conserved 94

in copy number across mammals (Rice and McLysaght 2017), whereas genes that are found 95

as small-scale duplications (SSDs) or present in (benign) CNVs are unlikely to be dosage 96

sensitive (Makino, McLysaght, and Kawata 2013), . Each of these evolutionary genomic 97

metrics is reflecting dosage sensitivity, though perhaps in slightly different ways. There 98

is a good deal of overlap between the various categories (Supp Figure ??), but they are 99

capturing slightly different information. For example, a given gene may never be observed 100

in a CNV in healthy individuals because it is itself highly dosage sensitive, or because it is 101

closely linked to a dosage-sensitive gene, or because it lies in a region of chromosome less 102

prone to CNV events. This means that while the genes within CNV regions in healthy 103

individuals are unlikely to be dosage-sensitive, the genes outside those regions will be a 104

mix of dosage-sensitive and non-dosage-sensitive genes. Similarly, ohnologs are biased 105

towards dosage sensitive genes, but are neither exclusively nor uniquely dosage sensitive. 106

While noting these caveats, throughout this work we use these sets of genes as proxies for 107

dosage sensitive genes. 108

Genes that are observed in CNVs in healthy individuals are unlikely to be strongly 109

dosage-sensitive therefore we expect that CNV-affected genes will have little expression 110

6/23

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.17.618887doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.17.618887
http://creativecommons.org/licenses/by/4.0/


Table 1. eQTL enrichment of gene groups. P-values for χ2 tests are Bonferroni-corrected
for multiple tests.

Bonferroni-corrected
eQTLs

Metasoft eQTLs

n
eQTL-
affected
genes

P-value
eQTL-
affected
genes

P-value

Zarrei et al. CNV
map

Genes in CNVR 7,124 87.3%
< 1× 10−16 95.0%

7.2× 10−8

Genes outside CNVRs 11,943 79.7% 92.9%

ExAC CNV genes
CNV-affected genes 13,337 85.0%

4.1× 10−13 95.7%
0.4

CNV-free genes 1,813 78.1% 94.6%

Duplication
status

Ohnologs 6,550 85.6%

1.7× 10−13

97.0%

< 1× 10−16Small-scale duplications (SSDs) 6,777 80.8% 90.9%

Singletons 5,740 81.2% 93.3%

Conserved copy
number genes

Conserved genes 6,932 86.2%
4.9× 10−15 97.2%

< 1× 10−16

Not conserved 11,470 81.6% 92.9%

Haploinsufficiency
Haploinsufficient genes 2,992 83.8%

1
98.8%

< 1× 10−16

Other genes 14,053 84.1% 94.3%

constraint. We find support for this simple expectation from examination of genes within 111

CNV regions (CNVRs). Taking recurrent CNVRs described in the inclusive CNV map 112

published by Zarrei et al. (2015), as well as CNV-affected genes across ∼60,000 exomes 113

analysed by the Exome Aggregation Consortium (ExAC) (Ruderfer et al. 2016) we find 114

that genes found within CNVs are enriched for being affected by eQTLs relative to 115

genes outside CNVs (Figure 1A and Table 1). This pattern is consistent for both the 116

Bonferroni-corrected eQTLs and the Metasoft eQTLs but the latter is not significant 117

for the ExAC CNVs (Table 1 and Supp Figure ??). Genes in CNVs also have a larger 118

absolute number of SNPs and a larger proportion of those that are found as significant 119

eQTLs (see Supplementary Information). 120

While this first result suggests a straightforward correlation between lack of copy 121

number constraints and presence of eQTLs, we found a contrary result with respect to long- 122

term evolutionary copy number constraints (Figure 1A and Table 1). Ohnologs, which are 123

generally refractory to further duplication and to CNV (Makino and McLysaght 2010) are 124

enriched for being affected by eQTLs relative to non-ohnologs. Similarly, conserved copy 125

number (CCN) genes, defined as genes which are in a one-to-one orthology relationships 126

in 13 mammalian genomes (i.e. no gene loss or duplication within the mammalian tree), 127

have also been seen to be refractory to CNVs (Rice and McLysaght 2017) and here are 128
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Figure 1. eQTL enrichment of CNVR genes and dosage sensitive genes. A,
Proportion of genes affected by eQTLs for two sets of CNVs (ExAC CNV data and
Zarrei et al. CNV map), ohnologs, haploinsufficient genes and mammalian copy number
conserved (CCN) genes. P-values shown above each plot are Bonferroni-adjusted. B,
Proportion of ohnologs (O) and non-ohnologs (N) affected by eQTLs per tissue. Sample
size from 5,188-12,104. C, Pairwise overlap as Jaccard index between eQTL-affected
genes in individual tissues. Upper triangle: Pairwise overlap of non-ohnologs; Lower
triangle: Pairwise overlap of ohnologs. D, Distributions of pairwise Jaccard index for
eQTL-affected genes between tissues for ohnologs and non-ohnologs.
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enriched for being affected by eQTLs. 129

130

The apparent contradiction between the dosage constraints operating on ohnologs across 131

evolutionary timescales, and the enrichment for eQTLs demands further explanation. We 132

considered the possibility that this might reflect something of the nature of the dosage 133

constraints, specifically, whether or not it applied to all expressed tissues. Although 134

ohnologs are more affected by eQTLs than non-ohnologs when considering all tissues 135

together, within individual tissues we observe that, for every tissue tested, ohnologs are 136

less frequently affected by eQTLs (Figure 1B). Given that the trend per tissue is the 137

opposite to the trend observed when pooling tissues, we examined the possibility that 138

more distinct subsets of ohnologs are affected by eQTLs in different tissues compared to 139

eQTL-affected non-ohnologs (Figure 2). 140

The Jaccard index is a measure of similarity between sets and is the size of the 141

intersection divided by the size of the union of the sets. If eQTL-affected ohnologs are 142

more distinct between tissues compared to eQTL-affected non-ohnologs then we expect 143

a lower Jaccard index between sets of ohnologs (i.e. a smaller overlap in eQTL-affected 144

genes). We calculated pairwise Jaccard indices for eQTL-affected ohnologs between the 145

48 tested tissues, and similarly for eQTL-affected non-ohnologs (Figure 1C). We find a 146

significantly lower similarity among eQTL-affected ohnologs compared to eQTL-affected 147

non-ohnologs (median Jaccard index of 1,128 tissue comparisons of eQTL-affected ohnologs: 148

0.17 vs. 0.27 for non-ohnologs; P < 2.2 × 10−16, Mann-Whitney U test; Figure 1D). 149

Duplication status, not expression level, predicts eQTL status 150

per tissue 151

As ohnologs are more highly expressed than SSDs (median expression for ohnologs: 8.9 152

TPM vs. 6.0 TPM for SSDs; P < 2.2 × 10−16, Mann-Whitney U test, median expression 153

for singletons: 10.3 TPM) and that genes affected by eQTLs tend to be more highly 154

9/23

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.17.618887doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.17.618887
http://creativecommons.org/licenses/by/4.0/


Tissue A

F

E

D

C

B

Tissue A

F

E

D

C

B

Dosage-sensitive genes

Non-dosage sensitive genes

expression altered by 

CNV

narrow eQTLs

broad eQTLs

CNV

narrow eQTLs

broad eQTLs

E
xp

re
ss

io
n
 l
ev

el
 

Normal/wt

Narrow-effect 
eQTL for tissue F

Narrow-effect 
eQTL for tissue E

Broad effect eQTL

Non-dosage sensitive genes Dosage-sensitive genes 
constrained in tissue E

Dosage-sensitive genes 
constrained in tissue F

benign expression dosage of a gene in a certain tissue 

Have eQTLs

eQTLs-free

A

B

C

Figure 2. Differential predicted consequences of broad-effect and narrow-effect eQTLs
on dosage-sensitive and non-dosage-sensitive genes across tissues. A A schematic represen-
tation of the proportion of genes affected by eQTLs globally and across individual tissues.
In this hypothetical scenario, the ohnologs are more likely to be affected by an eQTL
over all (4/5 compared to 3/5), but in each individual tissue they have fewer eQTLs. B
Non-dosage sensitive genes tolerate expression alterations (left panel). Dosage constraints
in some, but not all expressed tissues mean that broad effect eQTLS may be deleterious in
dosage-sensitive genes, while narrow-effect eQTLs may or may not be tolerated, depending
on the affected tissues (middle and right panels). Heart and skull icons are from Microsoft
and are copyright and royalty free https://support.microsoft.com/en-us/office/insert-icons-
in-microsoft-365-e2459f17-3996-4795-996e-b9a13486fa79 C Dosage-sensitive genes may
be associated with narrow-effect eQTLs. The tissue specificity of eQTLs is illustrated,
with broader eQTLs (affecting multiple tissues) located near the center and narrow-effect
eQTLs (affecting specific tissues) positioned towards the periphery. Purifying selection,
as shown in Figure B, leads to an enrichment of dosage-sensitive genes with narrow-effect
eQTLs, while depleting those with broad-effect eQTLs or CNVs
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expressed (median expression in a tissue for eQTL-affected genes: 8.9 TPM vs. 7.9 TPM 155

for unaffected; P < 2.2 × 10−16, Mann-Whitney U test), it was necessary to control for 156

expression level when comparing ohnologs and nonohnologs for eQTL-enrichment. We 157

binned genes into ten groups of equal size by their median tissue expression level across 158

GTEx samples for each tissue. We observe that ohnologs are less frequently affected by 159

eQTLs in every expression level category compared to non-ohnologs (Supp Figure ??). 160

To investigate the contribution of a gene’s expression level and duplication status 161

(ohnolog, SSD, singleton) to the presence or absence of an eQTL affecting a gene in a 162

given tissue, we performed a logistic regression analysis. For each gene in a tissue, to 163

predict its eQTL status, we used the gene’s median expression across GTEx samples in a 164

tissue, and whether it is classed as an ohnolog, SSD, or singleton. We also included the 165

interaction between expression level and duplication status in the model (Table ??). From 166

this logisitic regression analysis, it is clear that duplication status contributes far more 167

to whether a gene is affected by an eQTL in a tissue than expression level. The odds of 168

being affected by an eQTL for SSDs is 1.38 times that of ohnologs (P < 2.2× 10−16), and 169

for singletons is 1.41 times that of ohnologs (P < 2.2 × 10−16). Expression level and its 170

interaction with duplication status, while each significant in the model, have odds ratios 171

of 0.9998 and 1.0001 respectively and so meaningfully contribute little to eQTL status 172

(P = 0.0003 for both). 173

Dosage-sensitive genes have a smaller proportion of tissues af- 174

fected by eQTLs 175

By definition, dosage-sensitive genes are under some form of dosage constraint in at 176

least one of the tissues where they are expressed. CNVs may alter the amount of gene 177

product across all tissues, which can be permissible in cases where the expression change is 178

compatible with the constraint (e.g. a copy number gain of a gene that is haploinsufficient). 179

However, an incompatible CNV in conflict with an expression constraint can produce 180

a deleterious phenotype and will then be subject to purifying selection. eQTLs, on the 181
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Figure 3. eQTL tissue specificity of dosage-sensitive genes. A, proportion of
genes per number of tissues affected by Bonferroni-corrected eQTLs for genes affected
by CNVs (red plots), ohnologs (purple), haploinsufficient genes (blue) and copy number
conserved genes (pink). B, For each gene, proportion of tissues where the gene is expressed
that are affected by Bonferroni-corrected eQTLs. P-values above each group for Mann-
Whitney U tests and are Bonferroni-corrected.

other hand, can influence the expression of genes across a broad range of tissues or within 182

only a single tissue and may thus avoid tissue-specific dosage constraints (Figure 2). 183

So far we have observed that ohnologs are enriched for being affected by eQTLs when 184

considering all tissues simultaneously; are depleted for being affected by eQTLs when 185

considering tissues individually; and that the tissues affected by eQTLs are more distinct 186

between ohnologs than between non-ohnologs. Therefore, it follows that dosage-sensitive 187

genes should have fewer eQTL-affected tissues per gene, presumably due to their levels 188

being constrained in one or more of their tissues. 189

Examining this, we find that when comparing eQTL-affected genes, in each category of 190

presumed non-dosage-sensitive genes we observe a higher proportion of expressed tissues 191

affected by eQTLs than in the dosage-sensitive gene sets (Figure 3; Figure ??; Table ??). 192
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Figure 4. Broad tissue breadth eQTLs Proportion of genes affected by broad tissue
breadth Bonferroni-corrected eQTLs (influencing expression in 14 or more tissues) for two
sets of CNVs (ExAC CNV data and Zarrei et al. CNV map), ohnologs, haploinsufficient
genes and mammalian copy number conserved genes. χ2 test P-values shown above each
plot are Bonferroni-adjusted.

Dosage-sensitive genes are depleted for broad-tissue breadth eQTLs193

It makes intuitive sense that eQTLs that affect only a small number of tissues –narrow 194

tissue breadth eQTLs– are less likely to clash with the dosage constraints of a given gene. 195

To explore the relationship of eQTL tissue breadth and gene dosage constraints we focus 196

on genes that are affected by (Bonferroni-corrected) eQTLs in at least 14 tissues. These 197

genes could be affected by, say, 14 single-tissue eQTLs or one eQTL that affects expression 198

in 14 tissues. This threshold was chosen as the top 10% of Bonferroni-corrected eQTLs 199

affect gene expression in 14 or more tissues. We hereafter refer to these eQTLs affecting 200

at least 14 tissues as broad-tissue breadth eQTLs. We then ask if dosage-sensitive genes 201

within this set are depleted for being affected by broad-tissue-breadth eQTLs, even though 202

they have a large number of eQTL-affected tissues. 203

We find no significant difference in the proportion of genes affected by broad tissue 204

breadth eQTLs between genes experiencing CNVs and CNV-free genes (Figure 4). We do, 205

however, observe that ohnologs are depleted for being affected by broad tissue breadth 206

eQTLs compared to SSDs and singletons (63.4% of ohnologs vs. 74.9% for SSDs and 207

73.9% for singletons; P = 7.2× 10−9, χ2 test). Haploinsufficient genes are not significantly 208

different compared to haplosufficient genes for broad tissue breadth Bonferroni-corrected 209

eQTLs and copy number conserved genes are significantly different from others after 210
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Figure 5. Absolute eQTL effect sizes for all eQTLs in different gene groups.
Note the log10 scale. P-values above each group are for Mann-Whitney U tests and are
Bonferroni-corrected.

Bonferroni correction for multiple tests (67.9% of copy number conserved genes vs. 73.0% 211

for genes not conserved; P = 0.02, χ2 test). 212

In the Metasoft eQTL dataset the top 10% of eQTLs affect gene expression in 43 213

or more tissues, so we use this to define broad effect eQTLs to match the protocol 214

for the first set. For these broad tissue breadth Metasoft eQTLs, CNV genes are not 215

significantly different from CNV-free genes for both CNV datasets. However, ohnologs, 216

haploinsufficient genes, and copy number conserved genes are all significantly depleted for 217

broad tissue breadth Metasoft eQTLs (Figure ??). 218

219

eQTLs affecting dosage-sensitive genes have smaller effect sizes 220

The amount of influence an eQTL has on a gene’s expression level varies; some eQTLs 221

only moderately increase or decrease mRNA level, while others have large effects. The 222

direction and size of eQTL effects are quantified by the slope of the linear regression 223

model used in identifying eQTLs in the GTEx project and represent the effect of the 224

alternative allele relative to the reference allele. We hypothesise that dosage-sensitive 225

genes may tolerate an eQTL of small effect while being refractory to eQTLs inducing 226

larger expression changes. 227
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To test this we compare the absolute value of the slope of eQTLs between our gene 228

groups (Figure 5). We observe that CNV-free genes (median effect size: 0.35) and genes 229

outside CNVRs (median: 0.36) both are affected by eQTLs with smaller effect sizes 230

compared to CNV-affected genes (median: 0.38) and CNVR genes (0.45). Ohnologs, 231

haploinsufficent genes and copy number conserved genes are all affected by eQTLs 232

with significantly smaller effect sizes compared to their respective non-dosage-sensitive 233

counterparts (Figure 5). As a more conservative test, rather than all eQTLs (22,715,646 234

eQTLs), we compare only the most significant eQTL for each gene per tissue (210,472 235

eQTLs; Figure ??). We find the same significant trends in this more conservative set 236

of eQTLs. We also compare allele frequencies from The 1000 Genome Project of SNPs 237

associated with the most significant eQTL for each gene per tissue and find eQTLs affecting 238

SSDs have a significantly higher allele frequency compared to eQTLs affecting ohnologs 239

and singletons (Figure ??). eQTLs affecting haploinsufficient genes and CNV-free genes 240

both have significantly lower allele frequency than their counterparts. 241

Discussion 242

The results presented here add a new dimension of complexity to our understanding of 243

the consequences of dosage constraints on a gene’s evolution. Previous work has revealed 244

an interesting and informative link between evolutionary gene duplicability and dosage 245

sensitivity. Here we show that whereas ohnologs and copy-number conserved genes are 246

less likely to be successfully duplicated over evolutionary times or within species, they are 247

more likely to experience expression variation, as detected through eQTLs. At first glace, 248

this would appear to contradict the interpretation of dosage sensitivity, however this can 249

be explained as the difference between the system-wide and large increase caused by a 250

gene duplication, compared to the possibility of localised and smaller-effect changes that 251

can be achieved with eQTLs. 252

Using ohnologs, conserved-copy-number genes (CCNs) and genes without CNVs as 253

proxies, we find that dosage sensitive genes, while generally more likely to be affected 254
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by eQTLS, are affected in a more tissue-specific manner, in proportionally fewer tissues, 255

with smaller effects, and that SNPs linked to dosage sensitive genes are less likely to 256

be eQTLs. We interpret this pattern of eQTL breadth and effect size as reflecting the 257

dosage-sensitivity of the various classes of duplicate genes. Organism-wide or broad-effect 258

eQTLs are likely to clash with the expression constraints of a dosage-sensitive gene, and 259

ohnologs and mammalian copy-number conserved genes have previously been shown to be 260

enriched for dosage-sensitivity. 261

One clear difference in these analyses is seen in the results obtained for evolutionary 262

gene duplication status, and the results when considering CNVs. This may reflect two 263

important differences between these types of duplication events. The first is that CNVs 264

are often large enough to contain multiple genes, but the clinical effect of the CNV (benign 265

versus pathogenic) may be driven by the presence of just one dosage sensitive gene in the 266

region. This effect can create ’CNV deserts’ in the genome, even if not all of the genes 267

are in fact dosage sensitive (Makino, McLysaght, and Kawata 2013). This effect impacts 268

these datasets because the CNV-free genes dataset will be a mix of dosage-sensitive genes 269

and bystanders, and the dosage-sensitive genes may even be in a minority. We expect that 270

this does not affect the evolutionary duplication status, where there has been sufficient 271

time to resolve the dosage-constraints to a locus level with less linkage effect. Second, it 272

is also known that CNVs can affect gene expression in complex ways (Franke et al. 2016) 273

which may create extra layers of constraint and opportunity on this type of variation, and 274

in ways which may not be entirely generalisable. 275

Taken together, our results suggest a complex interplay between the dosage constraints 276

and the possible routes to variation in the amount of gene product. Whereas non- 277

dosage-sensitive genes may vary in gene copy number and in gene expression level, due 278

to their constraints this is not possible for dosage-sensitive genes, which can only vary 279

in more restricted ways. Thus the only opportunities to vary the amount of protein 280

produced from a dosage sensitive gene lie within tissue-restricted expression changes. This 281

constraint channels the evolution of dosage sensitive genes towards this comparatively 282
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narrow evolutionary path. Detecting and interpreting these evolutionary patterns may 283

shed new light on the functions and malfunctions of genes and the tissues where they are 284

expressed. 285

Methods 286

Data 287

The data used in this paper’s analyses are obtained from publicly available data repositories. 288

All additional data are available at 289

https://github.com/alanrice/paper-dosage-sensitivity-eqtl 290

Human eQTLs Two datasets of eQTLs from The Genotype-Tissue Expression (GTEx) 291

project V7 (GTEx Consortium 2017) were used: 1) significant single tissue SNP-gene 292

associations for 48 tissues; 2) Metasoft eQTLs in 48 tissues. The first eQTL dataset of 293

single tissue analyses was Bonferroni-corrected here for 48 tissues, and eQTLs were only 294

further considered when they remained significant after correction in at least one tissue. 295

The number of tissues where an eQTL affected expression was simply the count of tissues 296

that remained significant after Bonferroni correction. The second eQTL dataset is derived 297

from the first dataset of eQTLs where the data have been processed by Metasoft (Han 298

and Eskin 2012) to give a posterior probability of being an eQTL in each of the 48 tissues. 299

We included eQTLs when a tissue had a posterior probability of greater than 0.9. For 300

this dataset, the number of tissues where an eQTL affected expression was considered to 301

be the count of tissues with a posterior probability greater than 0.9. 302

CNV genes Copy number variant regions were obtained from the inclusive CNV map 303

in Zarrei et al. (2015) and a gene was considered to be intersecting with a region if 304

any of the gene sequence was overlapped by one or more bases on either strand using 305

Bedtools (Quinlan and Hall 2010). Genes that had a confident deletion or duplication 306

call in 60,000 individuals from the Exome Aggregation Consortium (ExAC) release 0.3 307
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dataset studied in Ruderfer et al. (2016) were defined as ‘CNV-affected genes’, otherwise 308

genes were labelled ‘CNV-free genes’. 309

Whole genome and small scale duplicates, and singletons in the human and 310

cow genomes Singletons were defined as protein-coding genes that lacked a protein- 311

coding paralog in Ensembl. A list of ohnologs (duplicates retained from whole genome 312

duplication events early in the vertebrate lineage) were obtained from Singh and Isambert 313

(2020) for both human and cow. Small scale duplicates were defined as protein-coding 314

genes that had paralogs in Ensembl that were not classed as ohnologs. Ensembl version 315

75 was used for the human genome and version 96 for the cow genome. 316

Haploinsufficient genes Haploinsufficient genes were defined as genes with a proba- 317

bility of loss-of-function mutation intolerance (pLI) of greater than 0.9 from the Exome 318

Aggregation Consortium (ExAC) (Lek et al. 2016). For the purposes of comparison, only 319

genes with available data and with pLI < 0.9 are included as ‘haplosufficient’. 320

Copy number conserved genes Mammalian copy number conserved (CCN) genes 321

are genes with no copy number changes in 13 mammalian genomes (Rice and McLysaght 322

2017). 323

SNP allele frequency Allele frequencies from The 1000 Genome Project were down- 324

loaded from NCBI dbSNP for single nucleotide variants that corresponded to the most 325

significant eQTL per gene/tissue (1000 Genomes Project Consortium et al. 2015; Sherry 326

et al. 2001). 327

Statistical analysis & figures 328

Unless otherwise stated, statistical tests were undertaken using R (R Core Team 2018) 329

and figure plots were generated using ggplot2 (Wickham 2016). 330

Pairwise Jaccard index was calculated between each tissue for eQTL-affected ohnologs 331

and nonohnologs seperately using the GeneOverlap R package (Shen 2020). 332
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Code availability 333

Jupyter notebooks (Kluyver et al. 2016) of analysis are available at https://github. 334

com/alanrice/paper-dosage-sensitivity-eqtl. 335
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